留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PtnCum(n+m=4) 对甲醇第一步脱氢催化性能的理论研究

佟永纯 王永成 王清云

佟永纯, 王永成, 王清云. PtnCum(n+m=4) 对甲醇第一步脱氢催化性能的理论研究[J]. 燃料化学学报(中英文), 2017, 45(5): 564-571.
引用本文: 佟永纯, 王永成, 王清云. PtnCum(n+m=4) 对甲醇第一步脱氢催化性能的理论研究[J]. 燃料化学学报(中英文), 2017, 45(5): 564-571.
TONG Yong-chun, WANG Yong-cheng, WANG Qing-yun. Theoretical study on the catalysis activity of PtnCum(n+m=4) for the first dehydrogenation of methanol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 564-571.
Citation: TONG Yong-chun, WANG Yong-cheng, WANG Qing-yun. Theoretical study on the catalysis activity of PtnCum(n+m=4) for the first dehydrogenation of methanol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 564-571.

PtnCum(n+m=4) 对甲醇第一步脱氢催化性能的理论研究

基金项目: 

国家自然科学基金 21263023

甘肃省自然科学基金 1606RJYG220

甘肃省河西走廊特色资源利用重点实验室面上项目 XZ1606

详细信息
    通讯作者:

    王永成, Tel: 0931-7970237, E-mail: 598552577@qq.com, ycwang@163.com

  • 中图分类号: O641

Theoretical study on the catalysis activity of PtnCum(n+m=4) for the first dehydrogenation of methanol

Funds: 

the National Natural Science Foundation of China 21263023

Natural Science Foundation of Gansu Province 1606RJYG220

General Program of Key Laboratory of Hexi Corridor Resources Utilization of Gansu XZ1606

  • 摘要: 采用密度泛函理论(DFT)中的B3PW91/LANL2DZ(ECP)方法在Gaussian09程序包中计算了二元合金催化剂PtnCumn+m=4)催化甲醇第一步脱氢反应的相关几何参数,主要研究了PtnCumn+m=4)在甲醇分子表面的吸附和脱氢反应的机理。通过比较Eads和脱氢能垒等发现,PtnCumn+m=4)催化甲醇脱氢的最优反应路径为甲醇分子中的甲基氢吸附在该二元金属催化剂Pt位点上导致的C-H断裂。并对比了PtnCumn+m=4)中Pt与Cu比例对甲醇催化脱氢活性的影响,结果表明,当二元合金催化剂中Pt与Cu的比例为1:1时,催化活性最高。
  • 图  1  CH3OH在Pt4上吸附和脱氢过程的势能面

    Figure  1  Potential energy profile for the adsorption and dehydrogenation of CH3OH on Pt4

    图  2  CH3OH在Pt3Cu上吸附和脱氢过程的势能面

    Figure  2  Potential energy profile for the adsorption and dehydrogenation of CH3OH on Pt3Cu

    图  3  CH3OH在Pt2Cu2上吸附和脱氢过程的势能面

    Figure  3  Potential energy profile for the adsorption and dehydrogenation of CH3OH on Pt2Cu2

    图  4  CH3OH在PtCu3上吸附和脱氢过程的势能面

    Figure  4  Potential energy profile for the adsorpt-ion and dehydrogenation of CH3OH on PtCu3

    图  5  CH3OH在Cu4上吸附和脱氢过程的势能面

    Figure  5  Potential energy profile for the adsorption and dehydrogenation of CH3OH on Cu4

    图  6  优化后的几何构型示意图

    Figure  6  Optimized geometric configuration

    图  7  CH3OH在双金属团簇PtnCum(n+m=4) 上吸附和脱氢的配位效应

    Figure  7  Ligand effects on the adsorption and dehydrogenation of CH3OH on the metallic clusters, PtnCum(n+m=4)

    (a): adsorption energies; (b): dehydrogenation barriers ■: H-Pt; ●: H-Cu; ▲: O-Pt; ▼: O-Cu

    图  8  CH3OH和PtnCum(n+m=4) 的Mulliken电荷和前线分子轨道

    Figure  8  Frontier molecular orbitals and Mulliken atomic charges of CH3OH and PtnCum(n+m=4)

  • [1] BRAUCHWEI G, HIBBITTS D, NEUROCK M, WIECKOWSKI A. Electrocatalysis: A direct alcohol fuel cell and surface science perspective[J]. Catal Today, 2013, 202: 197-209. doi: 10.1016/j.cattod.2012.08.013
    [2] GREELEY J, MAVRIKAKIS M. Competitive paths for methanol decomposition on Pt (111)[J]. J Am Chem Soc, 2004, 126(12): 3910-3919. doi: 10.1021/ja037700z
    [3] GREELEY J, MAVRIKAKIS M. A first-principles study of methanol decomposition on Pt (111)[J]. J Am Chem Soc, 2002, 124: 7193-7201. doi: 10.1021/ja017818k
    [4] CAO D, LU G Q, WIECKOWSKI A, WASILESKI S A, NEUROCK M. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach[J]. J Phys Chem B, 2005, 109(23): 11622-11633. doi: 10.1021/jp0501188
    [5] JOO S H, KWON K, YOU D J, PAK C, CHANG H, KIM J M. Preparation of high loading Pt nanoparticles on ordered mesoporous carbon with a controlled Pt size and its effects on oxygen reduction and methanol oxidation reactions[J]. Electrochim Acta, 2009, 54(24): 5746-5753. doi: 10.1016/j.electacta.2009.05.022
    [6] NIU C Y, JIAO J, XING B, WANG G C, BU X H. Reaction mechanism of methanol decomposition on Pt-based model catalysts: A theoretical study[J]. J Comput Chem, 2010, 31(10): 2023-2037. doi: 10.1002/jcc.21487/full
    [7] XU Z F, WANG Y X. Effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation: Adsorption and dehydrogenation on Pt3M (M=Pt, Ru, Sn, Re, Rh, and Pd)[J]. J Phys Chem C, 2011, 115: 20565-20571. doi: 10.1021/jp206051k
    [8] AMANI M, KAZEMEINI M, HAMEDANIAN M, PAHLAVANZADEH H, GHARIBI H. Investigation of methanol oxidation on a highly active and stable Pt-Sn electrocatalyst supported on carbon-polyaniline composite for application in a passive direct methanol fuel cell[J]. Mater Res Bull, 2015, 68: 166-178. doi: 10.1016/j.materresbull.2015.02.053
    [9] FENG C, TAKEUCHI T, ABDELKAREEM M A, TSUJIGUCHI T, NAKAGAWA N. Carbon-CeO2 composite nanofibers as a promising support for a PtRu anode catalyst in a direct methanol fuel cell[J]. J Power Sources, 2013, 242: 57-64. doi: 10.1016/j.jpowsour.2013.04.157
    [10] ZHAO J F, SUN X L, LI J L, HUANG X R. Theoretical study of methanol C-H and O-H bond activation by PtRu clusters[J]. Acta Phys Chim Sin, 2015, 31(5): 1077-1085. http://www.whxb.pku.edu.cn/EN/abstract/abstract29090.shtml
    [11] ZHU H, GUO Z, ZHANG X, HAN K, GUO Y, WANG F, WEI Y. Methanol-tolerant carbon aerogel-supported Pt-Au catalysts for direct methanol fuel cell[J]. Int J Hydrogen Energy, 2012, 37(1): 873-876. doi: 10.1016/j.ijhydene.2011.04.032
    [12] WANG F, ZHABG D J, DING Y. DFT study on CO oxidation catalyzed by PtmAun (m+n=4) clusters: Catalytic mechanism, active component, and the configuration of ideal catalysts[J]. J Phys Chem C, 2010, 114(3): 14076-14082. doi: 10.1021/jp101470c
    [13] CHEN M, LOU B, NI Z, XU B. PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell[J]. Electrochim Acta, 2015, 165: 105-109. doi: 10.1016/j.electacta.2015.03.007
    [14] YANG T T, ZHU H, WAN M, DONG L, ZHANG M, DU M. Highly efficient and durable PtCo alloy nanoparticles encapsulated in carbon nanofibers for electrochemical hydrogen generation[J]. Chem Commun, 2016, 52(5): 990-993. doi: 10.1039/C5CC08097E
    [15] HUANG Y, ZHENG S, LIN X, SU L, GUO Y. Microwave synthesis and electrochemical performance of a PtPb alloy catalyst for methanol and formic acid oxidation[J]. Electrochim Acta, 2012, 63: 346-353. doi: 10.1016/j.electacta.2011.12.112
    [16] WANG J, THOMAS D F, CHEN A. Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks[J]. Anal Chem, 2008, 80(4): 997-1004. doi: 10.1021/ac701790z
    [17] OEZASLAN M, STREASSER P. Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell[J]. J Power Sources, 2011, 196(12): 5240-5249. doi: 10.1016/j.jpowsour.2010.11.016
    [18] FU S, ZHU C, SHI Q, XIA H, DU D, LIN Y. Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions[J]. Nanoscale, 2016, 8(9): 5076-5081. doi: 10.1039/C5NR07682J
    [19] LIU Y, HUANG Y, XIE Y, YANG Z, HUANG H, ZHOU Q. Preparation of highly dispersed CuPt nanoparticles on ionic-liquid-assisted graphene sheets for direct methanol fuel cell[J]. Chem Eng J, 2012, 197: 80-87. doi: 10.1016/j.cej.2012.05.011
    [20] KOMATSU T, TAMURA A. Pt3Co and PtCu intermetallic compounds: Promising catalysts for preferential oxidation of CO in excess hydrogen[J]. J Catal, 2008, 258(2): 306-314. doi: 10.1016/j.jcat.2008.06.030
    [21] ZHANG G, YANG Z, ZHANG W, WANG Y. Facile synthesis of graphene nanoplate-supported porous Pt-Cu alloys with high electrocatalytic properties for methanol oxidation[J]. J Mater Chem A, 2016, 4: 3316-3323. doi: 10.1039/C5TA09937D
    [22] CHEN D, ZHAO Y, PENG X, WANG X, HU W, JING C, TIAN J. Star-like PtCu nanoparticles supported on graphene with superior activity for methanol electro-oxidation[J]. Electrochim Acta, 2015, 177: 86-92. doi: 10.1016/j.electacta.2015.03.066
    [23] SUN J, SHI J, XU J, CHEN X, ZHANG Z, PENG Z. Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum-copper alloy: Experiment and density functional theory calculation[J]. J Power Sources, 2015, 279: 334-344. doi: 10.1016/j.jpowsour.2015.01.025
    [24] HUANG M, GUAN L. Facile synthesis of carbon supported Pt-Cu nanomaterials with surface enriched Pt as highly active anode catalyst for methanol oxidation[J]. Int J Hydrogen Energy, 2015, 40(20): 6546-6551. doi: 10.1016/j.ijhydene.2015.03.099
    [25] PERDEW J P, BURKE K, WANG Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys Rev B Condens Matter, 1996, 54(23): 16533-16539. doi: 10.1103/PhysRevB.54.16533
    [26] BECKE A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. J Chem Phys, 1993, 98(7): 5648-5652. doi: 10.1063/1.464913
    [27] FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, MONTGOMERY J A J, VREVEN T, KUDIN K N, BURANT J C, MILLAM J M, IYENGAR S S, TOMASI J, BARONE J V, MENUCCI B C M, SCALMANI G, REGA N, PETERSSON G A, NAKATSUJI H, HADA M, EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, KLENE M, Li X, Knox J E, HRATCHIAN H P, CROSS J B, BAKKEN V, ADAMO C, JARAMILLO J, GOMPERTS R, STRATMANN R E, YAZYEV O, AUSTIN A J, CAMMI R, POMELLI C, OCHTERSKI J W, AYALA P Y, MOROKUMA K, VOTH G A, SALVADOR P, DANNENBERG J J, ZAKRZEWSKI V G, DAPPRICH S, DANIELS A D, STRAIN M C, FARKAS O, MALICK D K, RABUCK A D, RAGHAVACHARI K, FORESMAN J B, ORTIZ J V, CUI Q, BABOUL A G, CLIFFORD S, CIOSLOWSKI J, STEFANOV B B, LIU G, LIASHENKO A, PISKORZ P, KOMAROMI I, MARTIN R L, FOX D J, KEITH T, AL-LAHAM M A, PENG C Y, NANAYAKKARA A, CHALLACOMBE M, GILL P M W, JOHNSON B, CHEN W, WONGM W, GONZALEZ C, POPLE J A. Gaussian Inc[J]. Wallingford CT, 2009.
    [28] HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals[J]. J Chem Phys, 1985, 82(1): 299-310. doi: 10.1063/1.448975
    [29] DESAI S K, NEUROCK M, KOURTAKIS K. A periodic density functional theory study of the dehydrogenation of methanol over Pt (111)[J]. J Phys Chem B, 2002, 106(10): 2559-2568. doi: 10.1021/jp0132984
  • 加载中
图(8)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  41
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-26
  • 修回日期:  2017-04-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-05-10

目录

    /

    返回文章
    返回