留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TPAOH处理制备的微介孔催化剂物化性质与噻吩烷基化性能研究

刘冬梅 王海彦 孔飞飞 毛艳红 王坤

刘冬梅, 王海彦, 孔飞飞, 毛艳红, 王坤. TPAOH处理制备的微介孔催化剂物化性质与噻吩烷基化性能研究[J]. 燃料化学学报(中英文), 2016, 44(11): 1370-1379.
引用本文: 刘冬梅, 王海彦, 孔飞飞, 毛艳红, 王坤. TPAOH处理制备的微介孔催化剂物化性质与噻吩烷基化性能研究[J]. 燃料化学学报(中英文), 2016, 44(11): 1370-1379.
LIU Dong-mei, WANG Hai-yan, KONG Fei-fei, MAO Yan-hong, WANG Kun. Physical and chemical properties of micro-mesoporous catalysts with tetrapropylammonium hydroxide treatment and their performance in thiophene alkylation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1370-1379.
Citation: LIU Dong-mei, WANG Hai-yan, KONG Fei-fei, MAO Yan-hong, WANG Kun. Physical and chemical properties of micro-mesoporous catalysts with tetrapropylammonium hydroxide treatment and their performance in thiophene alkylation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1370-1379.

TPAOH处理制备的微介孔催化剂物化性质与噻吩烷基化性能研究

基金项目: 

辽宁省自然科学基金 201202126

详细信息
    通讯作者:

    刘冬梅, Tel:13842357629, E-mail:ldmwain1234@126.com

  • 中图分类号: TQ426.95

Physical and chemical properties of micro-mesoporous catalysts with tetrapropylammonium hydroxide treatment and their performance in thiophene alkylation

Funds: 

the National Natural Science Foundation of Liaoning 201202126

  • 摘要: 采用不同浓度的TPAOH溶液处理不同SiO2/Al2O3物质的量比的HZSM-5分子筛,制备了微孔-介孔多级孔HZSM-5催化剂。结果表明,采用不同浓度的TPAOH溶液处理不同SiO2/Al2O3物质的量比的HZSM-5分子筛能够脱出HZSM-5分子筛的骨架硅而产生介孔,介孔孔径随TPAOH溶液浓度和SiO2/Al2O3物质的量比的增大而增大;TPAOH溶液处理能够调变HZSM-5催化剂的酸性。采用不同浓度的TPAOH溶液处理SiO2/Al2O3物质的量比分别为50、80和150的HZSM-5分子筛,其中,SiO2/Al2O3物质的量比为50的HZSM-5弱中酸酸强度、相对酸量、B酸和L酸含量明显高于SiO2/Al2O3物质的量比为80和150的HZSM-5分子筛。经不同浓度的TPAOH溶液处理后SiO2/Al2O3物质的量比为50的HZSM-5催化剂具有最佳的噻吩烷基化反应性能。
  • 图  1  HZ (T-50-n)、HZ (T-80-n) 和HZ (T-150-n) 的XRD谱图

    Figure  1  XRD patterns of HZ (T-50-n)(a), HZ (T-80-n) (b) and HZ (T-150-n)(c)

    图  2  HZ (T-50-n)、HZ (T-80-n) 和HZ (T-150-n) 的N2吸附-脱附等温曲线

    Figure  2  Nitrogen adsorption-desorption isotherms of HZ (T-50-n)(a), HZ (T-80-n) (b) and HZ (T-150-n)(c)

    图  3  HZ (T-50-n)、HZ (T-80-n) 和HZ (T-150-n) 的SEM照片

    Figure  3  SEM images of HZ (T-50-n), HZ (T-80-n) and HZ (T-150-n)

    (a): HZ (50); (b): HZ (T-50-0.5); (c): HZ (T-50-1.0); (d): HZ (80)); (e): HZ (T-80-0.5) (f): HZ (T-80-1.0); (g): HZ (150); (h): HZ (T-150-0.5); (i): HZ (T-150-1.0)

    图  4  HZ (T-50-n)、HZ (T-80-n) 和HZ (T-150-n) 的NH3-TPD谱图

    Figure  4  NH3-TPD profiles of HZ (T-50-n), HZ (T-80-n) and HZ (T-150-n)

    a: HZ (T-50-1.0); b: HZ (T-50-0.5); c: HZ (50); d: HZ (T-80-1.0); e: HZ (T-80-0.5); f: HZ (80); g: HZ (T-150-1.0); h: HZ (T-150-0.5); i: HZ (150)

    图  5  HZ (T-50-n)、HZ (T-80-n) 和HZ (T-150-n) 的29Si MAS NMR谱图

    Figure  5  29Si MAS NMR spectra of HZ (T-50-n), HZ (T-80-n) and HZ (T-150-n)

    表  1  HZ (T-50-n)、HZ (T-80-n) 和HZ (T-150-n) 的孔结构性质

    Table  1  Pore structural characteristics of HZ (T-50-n), HZ (T-80-n) and HZ (T-150-n)

    Sample ABET/
    (m2·g-1)
    Aext/
    (m2·g-1)
    vmicro/
    (cm3·g-1)
    vtotal/
    (cm3·g-1)
    daver/nm Relative crystallinity /%
    HZ (50) 317.9 11.1 0.15 0.19 1.5 100
    HZ (T-50-0.1) 323.6 16.9 0.16 0.20 1.9 103
    HZ (T-50-0.3) 330.3 24.8 0.16 0.22 2.1 99
    HZ (T-50-0.5) 343.3 35.6 0.15 0.24 2.8 96
    HZ (T-50-1.0) 357.6 48.1 0.14 0.28 3.6 92
    HZ (80) 342.1 13.7 0.18 0.21 1.7 100
    HZ (T-80-0.1) 358.4 28.5 0.18 0.21 2.4 101
    HZ (T-80-0.3) 379.2 48.8 0.18 0.25 2.6 96
    HZ (T-80-0.5) 396.8 66.8 0.17 0.27 3.5 92
    HZ (T-80-1.0) 429.4 97.7 0.15 0.31 4.6 87
    HZ (150) 429.9 17.2 0.21 0.23 1.9 100
    HZ (T-150-0.1) 451.8 37.9 0.21 0.27 3.2 98
    HZ (T-150-0.3) 487.3 72.7 0.22 0.34 4.1 94
    HZ (T-150-0.5) 526.4 113.8 0.20 0.37 4.9 90
    HZ (T-150-1.0) 548.6 139.3 0.19 0.39 5.6 83
    下载: 导出CSV

    表  2  HZ (T-50-n)、HZ (T-80-n) 和HZ (T-150-n) 的Si/Al物质的量比

    Table  2  SiO2/Al2O3 mol ratios of HZ (T-50-n), HZ (T-80-n) and HZ (T-150-n)

    Sample Si/Al
    (mol ratio)
    Sample Si/Al
    (mol ratio)
    HZ (50) 25 HZ (T-80-0.5) 33
    HZ (T-50-0.1) 24 HZ (T-80-1.0) 30
    HZ (T-50-0.3) 23 HZ (150) 75
    HZ (T-50-0.5) 21 HZ (T-150-0.1) 71
    HZ (T-50-1.0) 19 HZ (T-150-0.3) 68
    HZ (80) 40 HZ (T-150-0.5) 65
    HZ (T-80-0.1) 38 HZ (T-150-1.0) 60
    HZ (T-80-0.3) 36
    下载: 导出CSV

    表  3  HZ (T-50-n)、HZ (T-80-n) 和HZ (T-150-n) 的Py-FTIR表征

    Table  3  Py-FTIR characterization results of HZ (T-50-n), HZ (T-80-n) and HZ (T-150-n)

    Sample CB/CL CB
    /(mmol·L-1)
    CL
    /(mmol·L-1)
    HZ (50) 3.0 0.415 0.137
    HZ (T-50-0.1) 2.9 0.417 0.142
    HZ (T-50-0.3) 2.7 0.423 0.159
    HZ (T-50-0.5) 2.5 0.429 0.173
    HZ (T-50-1.0) 2.2 0.431 0.196
    HZ (80) 2.8 0.275 0.098
    HZ (T-80-0.1) 2.6 0.279 0.109
    HZ (T-80-0.3) 2.5 0.288 0.117
    HZ (T-80-0.5) 2.5 0.311 0.126
    HZ (T-80-1.0) 2.4 0.318 0.132
    HZ (150) 2.3 0.128 0.056
    HZ (T-150-0.1) 2.1 0.135 0.065
    HZ (T-150-0.3) 2.0 0.143 0.073
    HZ (T-150-0.5) 1.8 0.157 0.085
    HZ (T-150-1.0) 1.7 0.161 0.097
    下载: 导出CSV

    表  4  HZ (T-50-n)、HZ (T-80-n) 和HZ (T-150-n) 的噻吩烷基化反应物转化率及产物分布

    Table  4  Conversion and product distribution of the thiophene alkylation reaction of HZ (T-50-n), HZ (T-80-n) and HZ (T-150-n)

    Sample Conversion x/% HTS distribution w/% 1-hexene selectivity s/%alkylation
    thiophene alkylation 1-hexene HT DHT THT
    HZ (50) 41.2 27.3 99.2 1.2 0.0 88.7
    HZ (T-50-0.1) 50.7 35.6 93.1 6.8 0.1 88.1
    HZ (T-50-0.3) 78.3 42.1 80.2 17.6 2.2 86.8
    HZ (T-50-0.5) 83.9 49.7 63.5 30.9 5.6 81.5
    HZ (T-50-1.0) 87.7 60.1 30.2 60.9 8.8 74.4
    HZ (80) 31.3 14.8 98.3 1.3 0.4 89.3
    HZ (T-80-0.1) 39.7 17.6 93.4 5.8 0.8 88.9
    HZ (T-80-0.3) 47.1 20.3 83.2 14.2 2.6 87.7
    HZ (T-80-0.5) 58.9 25.6 60.7 33.4 5.9 86.2
    HZ (T-80-1.0) 73.6 30.1 28.6 61.8 9.6 86.4
    HZ (150) 27.2 9.8 99.1 0.8 0.1 94.3
    HZ (T-150-0.1) 32.8 14.9 95.2 3.7 1.1 93.5
    HZ (T-150-0.3) 39.6 17.5 89.3 8.6 2.1 92.8
    HTs: alkylthiophene; HT: hexylthiophene; DHT: two hexylthiophene; THT: three hexylthiophene
    下载: 导出CSV
  • [1] BABICH I V, MOULIJIN J A. Science and technology of novel processes for deep desulfurization of oil refinery streams:A review[J]. Fuel, 2003, 82(6):607-631. doi: 10.1016/S0016-2361(02)00324-1
    [2] 尚琪, 汤大钢.控制车用汽油有害物质降低机动车排放[J].环境科学研究, 2000, 13(1):32-35. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200001011.htm

    SHANG Qi, TANG Da-gang. Control harmful substances of vehicle gasoline to reduce motor vehicle emissions[J]. Res Environ Sci, 2000, 13(1):32-35. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200001011.htm
    [3] ZHOU L. Production of low sulfur gasoline:US, 6623627[P]. 2003-11-23.
    [4] YIN C, XIA D. A study of the distribution of sulfur compounds in gasoline produced in China. Part 3. Identification of individual sulfides and thiophenes[J]. Fuel, 2004, 83(4):433-441. https://www.researchgate.net/publication/244067569_A_study_of_the_distribution_of_sulfur_compounds_in_gasoline_produced_in_China_Part_3_Identification_of_individual_sulfides_and_thiophenes
    [5] CORMA A, MARTINEZ C. On the mechanism of sulfur removal during catalytic cracking[J]. Appl Catal A:Gen, 2001, 208(1):135-152. http://www.ingentaconnect.com/content/els/0926860x/2001/00000208/00000001/art00693
    [6] 刘继华, 赵乐平, 方向晨, 宋永一. FCC汽油选择性加氢脱硫技术开发及工业应用[J].炼油技术与工程, 2007, 37(7):1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-LYSZ200707003.htm

    LIU Ji-hua, ZHAO Le-ping, FANG Xiang-chen, SONG Yong-yi. The development of selective hydrogenation desulfurization technology in FCC gasoline and its industrial application[J]. Pet Refin Eng, 2007, 37(7):1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-LYSZ200707003.htm
    [7] 常振勇.汽油噻吩硫的烷基化脱除技术[J].炼油技术与工程, 2002, 32(5):44-46. http://www.cnki.com.cn/Article/CJFDTOTAL-LYSZ200205015.htm

    CHANG Zhen-yong. Alkylation removal technology of thiophene sulfur in gasoline[J]. Pet Refin Eng, 2002, 32(5):44-46. http://www.cnki.com.cn/Article/CJFDTOTAL-LYSZ200205015.htm
    [8] 徐亚荣, 沈本贤, 徐新良, 朱庆才. FCC汽油噻吩类硫化物烷基化硫转移反应机理的量子化学[J].石油学报(石油加工), 2011, 27(5):806-811. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201105029.htm

    XU Ya-rong, SHEN Ben-xian, XU Xin-liang, ZHU Qing-cai. The quantum chemistry of reaction mechanism on the thiophene sulfide alkylation in FCC gasoline[J]. J Petrochem (Petrochem Pro), 2011, 27(5):806-811. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201105029.htm
    [9] 徐亚荣, 沈本贤, 徐新良, 赵基钢, 刘刚.固体混合酸催化FCC汽油烷基化硫转移性能的研究[J].华东理工大学学报(自然科学版), 2010, 36(5):633-638. http://www.cnki.com.cn/Article/CJFDTOTAL-HLDX201005007.htm

    XU Ya-rong, SHEN Ben-xian, XU Xin-liang, ZHAO Ji-gang, LIU Gang. Study on the catalytic performance of sulfur alkylation in FCC gasoline over solid mixed acid[J]. J East Sci Technol Univ (Nat Sci Ed), 2010, 36(5):633-638. http://www.cnki.com.cn/Article/CJFDTOTAL-HLDX201005007.htm
    [10] 史荣会, 潘蓉, 吴利红, 张冉冉.固体酸催化剂烷基化脱噻吩硫的研究进展[J].现代化工, 2014, 34(9):32-35. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201409010.htm

    SHI Rong-hui, PAN Rong, WU Li-hong, ZHANG Ran-ran. Advances in the research on the thiophene alkylation over solid acid catalysts[J]. Mod Chem Ind, 2014, 34(9):32-35. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201409010.htm
    [11] 何英萍, 刘民, 代成义, 徐舒涛, 魏迎旭, 刘中民, 郭新闻.四丙基氢氧化铵改性纳HZSM-5分子筛及其在甲醇制汽油中的催化性能[J].催化学报, 2013, 34(6):1148-1154. doi: 10.1016/S1872-2067(12)60579-8

    HE Ying-ping, LIU Min, DAI Cheng-yi, XU Shu-tao, WEI Ying-xu, LIU Zhong-min, GUO Xin-wen. The modification of nano HZSM-5 molecular sieve by TPAOH and its catalytic performance on methanol to gasoline[J]. Chin J Catal, 2013, 34(6):1148-1154. doi: 10.1016/S1872-2067(12)60579-8
    [12] 赵丽霞, 李钢, 金长子, 王云, 王祥生.四丙基氢氧化铵改性TS-1催化氧化脱除2-甲基噻吩[J].石油学报(石油加工), 2007, 23(4):95-99. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG200704017.htm

    ZHAO Li-xia, LI Gang, JIN Chang-zi, WANG Yun, WANG Xiang-sheng. The catalytic oxidation over TS-1 modified by TPAOH to remove 2-methyl thiophene[J]. Acta Pet Sin (Pet Process Sect), 2007, 23(4):95-99. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG200704017.htm
    [13] 左轶, 刘民, 姜海英, 郭新闻.四丙基氢氧化铵处理TS-1催化1-丁烯环氧化[J].石油学报(石油加工), 2015, 31(3):611-616. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201503002.htm

    ZUO Yi, LIU Min, JIANG Hai-ying, GUO Xin-wen. The catalysis oxidation of 1-butylene over TS-1 by the treatment of TPAOH[J]. Acta Pet Sin (Pet Process Sect), 2015, 31(3):611-616. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201503002.htm
    [14] AHMADPOUR J, TAGHIZADEH M. Selective production of propylene from methanol over high-silica mesoporous ZSM-5 zeolites treated with NaOH and NaOH/tetrapropylammonium hydroxide[J].Comptes Rendus Chimie, 2015, 18(8):834-847. doi: 10.1016/j.crci.2015.05.002
    [15] JAVIER P-R, VERBOCKEND D, BONILLA A, ABELLO S. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators[J].Adv Funct Mater, 2009, 19(24):3972-3979. doi: 10.1002/(ISSN)1616-3028
    [16] 何英萍.改性HZSM-5分子筛催化甲醇制汽油性能研究[D].大连:大连理工大学, 2013.

    HE Ying-ping. Study on performance methanol to gasoline over modified HZSM-5 molecular sieve catalyst[D]. Dalian:Dalian Technology of University, 2013.
    [17] 刘冬梅, 翟玉春, 马健, 王海彦.不同碱处理制备多级孔HZSM-5催化剂及噻吩烷基化性能研究[J].燃料化学学报, 2015, 43(4):462-469. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18611.shtml

    LIU Dong-mei, ZHAI Yu-chun, MA Jian, WANG Hai-yan. Study on the prepartion of HZSM-5 with different alkali treatments and the performance of thiophene alkylation[J].J Fuel Chem Technol, 2015, 43(4):462-469. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18611.shtml
    [18] 许迪欧.多级孔纳米分子筛的制备与性质研究[D].长春:吉林大学, 2011.

    XU Di-ou. Preparation and properties of multi stage porous nano molecular catalyst[D]. Changchun:Jilin University, 2011.
    [19] GROEN J C, PEFFER L A A, JACOB A, JAVIER P R. On the introduction of intracrystalline mesoporosity in zeolites upon desilieation in alkaline medium[J]. Micropous Mescopous Mater, 2004, 69(l/2):29-34.
    [20] 张彦禹.多级孔HZSM-5催化剂上甲醇合成燃料油的催化性能研究[D].太原:太原理工大学, 2011.

    ZHANG Yan-yu. Study on catalytic performance of methanol synthesis fuel oil over multi stage porous HZSM-5 catalyst[D]. Taiyuan:Taiyuan Technology of University, 2011.
    [21] GROEN J C, JANSEN J C, MOULIJN J A, PEREZ-RAMIZER J. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilination[J]. Cheminform, 2004, 35(45):13062-13065.
    [22] TAO Y, KANOH H, KANEKO K. Developments and structures of mesopores in alkaline-treated ZSM-5 zeolites[J]. Adsorption, 2006, 12(5/6):309-316.
    [23] 毛璟博, 刘民, 李鹏, 刘阳, 郭新闻. TPAOH改性的微米TS-1表征及其催化性能[J].燃料化学学报, 2008, 36(4):484-488. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17332.shtml

    MAO Jing-bo, LIU Min, LI Peng, LIU Yang, GUO Xin-wen. The characterization and catalytic performance of micro TS-1 modified by TPAOH[J]. J Fuel Chem Technol, 2008, 36(4):484-488. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17332.shtml
    [24] 黄先亮.二次晶化法修饰改性TS-1及催化环己酮氨氧化反应的研究[D].湘潭:湘潭大学, 2008.

    HUANG Xian-liang. Study on the modification of TS-1 by two crystallization method and the catalytic cyclohexanone ammoxidation reaction[D]. Xiangtan:Xiangtan University, 2008.
    [25] 李莎, 李玉平, 狄春雨, 张鹏飞, 潘瑞丽, 窦涛. TPAOH/NaOH混合碱体系对ZSM-5沸石的改性及其催化性能研究[J].燃料化学学报, 2012, 40(5):583-588. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17947.shtml

    LI Sha, LI Yu-ping, DI Chun-yu, ZHANG Peng-fei, PAN Rui-yu, DOU Tao. Study on the modification of ZSM-5 by the treatment of TPAOH/NaOH mixed alkali system and its catalytic performance[J]. J Fuel Chem Technol, 2012, 40(5):583-588. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17947.shtml
    [26] OGURA M, SHINOMIVA S Y, TATENO J, NARA Y, NOMURA M. Alkali-treatment technique-new method for modification of structure and acid-catalytic properties of ZSM-5 zeolites[J]. Appl Catal A:Gen, 2001, 219(1/2):33-43.
    [27] MILBURN D R, DAVIS B H. Comparision of surface areas caculated from nitrogen adsorption and mercury porosimetry[C]//A Collection of Papers On Engineering Aspects of Fabrication of Ceramics Ceramic Engineering & Science Proceedings, 2008, 32(40):130-134.
    [28] 曾昭槐.择形催化[M].北京:中国石化出版社, 1994, 1-87.

    ZENG Zhao-kui. Shape Selective Catalyst[M]. Beijing:Sinopec press, 1994, 1-87.
    [29] 肖何, 高俊华, 胡津仙, 章斌, 刘平, 张侃.酸碱改性HZSM-5分子筛上甲醇制取均四甲苯的研究[J].燃料化学学报, 2013, 41(1):102-109. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18108.shtml

    XIAO He, GAO Jun-hua, HU Jin-xian, ZHANG Bin, LIU Ping, ZHANG Kan. Study on the reaction of methanol to durene over HZSM-5 molecular sieve with acid and alkali modification[J]. J Fuel Chem Technol, 2013, 41(1):102-109. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18108.shtml
    [30] FATHI S, SOHRABIM, FALAMAKI C. Improvement of HZSM-5 performance by alkaline treatments:Comparative catalytic study in the MTG reaction[J].Fuel, 2014, 116(1):529-537.
    [31] 聂宁, 沈健. USY分子筛催化噻吩烷基化性能的研究[J].石化技术与应用, 2013, 31(2):110-114. http://www.cnki.com.cn/Article/CJFDTOTAL-IZHM201302006.htm

    NIE Ning, SHEN Jian. Study on the performance of thiophene alkylation over USY molecular sieve[J]. Petrochem Technol Appl, 2013, 31(2):110-114. http://www.cnki.com.cn/Article/CJFDTOTAL-IZHM201302006.htm
    [32] 唐津莲, 许友好, 徐莉, 汪燮卿.庚烯与H2S在酸性催化剂上的反应机理Ⅱ.噻吩类化合物生成机理[J].石油学报(石油加工), 2008, 24(3):243-250.

    TANG Jin-lian, XU You-hao, XU Li, WANG Xie-qing. The reaction mechanism of heptylene and H2S and the generation mechanism of thiophene compounds over the acidic catalyst[J]. Acta Pet Sin (Pet Process Sect), 2008, 24(3):243-250.
    [33] 徐新, 罗国华, 靳海波, 佟泽民. AlCl3-磺酸树脂催化噻吩类硫化物与异丁烯烷基化硫转移反应[J].过程工程学报, 2006, 6(2):181-184.

    XU Xin, LUO Guo-hua, QI Hai-bo, TONG Jin-min. AlCl3-sulfonic acid resin catalyes alkylation sulfur transform reaction between isobutene and thiophene[J]. Chin J Process Eng, 2006, 6(2):181-184.
    [34] 张泽凯, 刘盛林, 王清遐, 徐龙伢. H β催化剂上噻吩烷基化脱硫[J].石油化工, 2005, 35(增刊):681-683.

    ZHANG Ze-kai, LIU Sheng-lin, WANG Qing-xia, XU Long-ya. The thiophene alkylation desulfurization on the H β catalyst[J]. Petro Chem Ind, 2005, 35(Suppl):681-683.
    [35] 刘盛林, 郭晓野, 张泽凯, 谢素娟, 戴洪义, 徐龙伢. MCM-22分子筛介孔对汽油烷基脱硫影响[J].石油学报(石油加工), 2008, (Z):88-91.

    LIU Sheng-lin, GUO Xiao-ye, ZHANG Ze-kai, XIE Su-juan, DAI Hong-yi, XU Long-ya. Effect of mesoporous MCM-22 molecular sieve on gasoline alkylation desulfurization[J]. Acta Pet Sin (Pet Process Sect), 2008, (Z):88-91.
    [36] 赵玉芝, 李永红, 李兰芳, 张丽萍. USY分子筛催化FCC汽油的烷基化脱硫反应研究[J].分子催化, 2008, 22(1):17-21.

    ZHAO Yu-zhi, LI Yong-hong, LI Lan-fang, ZHANG Li-ping. Study on alkylation desulfurization of FCC gasoline over USY molecular sieve catalyst[J]. J Mol Catal, 2008, 22(1):17-21.
    [37] 毕建国.烷基化油生产技术的进展[J].化工进展, 2007, 26(7):934-939.

    BI Jian-guo. Progress in the production technology of alkylation oil[J]. Prog Chem, 2007, 26(7):934-939.
    [38] 王榕, 李永红, 张丽萍, 杨长生, 夏淑倩.固体磷酸催化FCC汽油烷基化脱硫的活性和稳定性[J].化学反应工程与工艺, 2008, 24(1):40-44.

    WANG Rong, LI Yong-hong, ZHANG Li-ping, YANG Chang-sheng, XIA Shu-qian. The activity and stability of alkylation desulfurization in FCC gasoline by solid phosphoric acid[J]. Chem React Eng Technol, 2008, 24(1):40-44.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  52
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-21
  • 修回日期:  2016-07-11
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-11-10

目录

    /

    返回文章
    返回