留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹炭负载氧空位型BiOI/BiOCl复合光催化剂脱硝机理

夏旻 赵然 龚小丽 秦俊琪 王寒梅 夏东升 王栋

夏旻, 赵然, 龚小丽, 秦俊琪, 王寒梅, 夏东升, 王栋. 竹炭负载氧空位型BiOI/BiOCl复合光催化剂脱硝机理[J]. 燃料化学学报(中英文), 2017, 45(12): 1522-1528.
引用本文: 夏旻, 赵然, 龚小丽, 秦俊琪, 王寒梅, 夏东升, 王栋. 竹炭负载氧空位型BiOI/BiOCl复合光催化剂脱硝机理[J]. 燃料化学学报(中英文), 2017, 45(12): 1522-1528.
XIA Min, ZHAO Ran, GONG Xiao-li, QIN Jun-qi, WANG Han-mei, XIA Dong-sheng, WANG Dong. Mechanism for NOx removal over the bamboo charcoal supported BiOI/BiOCl composite photocatalyst with oxygen vacancy[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1522-1528.
Citation: XIA Min, ZHAO Ran, GONG Xiao-li, QIN Jun-qi, WANG Han-mei, XIA Dong-sheng, WANG Dong. Mechanism for NOx removal over the bamboo charcoal supported BiOI/BiOCl composite photocatalyst with oxygen vacancy[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1522-1528.

竹炭负载氧空位型BiOI/BiOCl复合光催化剂脱硝机理

基金项目: 

湖北省教育厅青年人才项目 Q20151605

纺织新材料及其应用湖北省重点实验室开放课题 Fzxcl2017004

生物质纤维与生态染整湖北省重点实验室开放课题 STRZ2017005

详细信息
  • 中图分类号: X511

Mechanism for NOx removal over the bamboo charcoal supported BiOI/BiOCl composite photocatalyst with oxygen vacancy

Funds: 

the Scientific Research Plan Project of Education Department of Hubei Q20151605

Open Source Project of Hubei Key Laboratory of Advanced Textile Materials & Application Fzxcl2017004

Open Source Project of Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing STRZ2017005

More Information
  • 摘要: 以竹炭为载体,采用溶剂热法制备了氧空位(OV)型BiOI/BiOCl光催化剂,考察了温度和光照强度对其催化脱硝性能的影响,采用SEM、XPS、XRD、PL、Uv-vis等表征方法研究了该复合光催化剂上的脱硝机理。结果表明,在氙灯功率500 W、温度30 ℃时,最佳脱硝效率可达73%。氧空位改性可以增大竹炭的比表面积和孔容,提高其吸附能力,同时使C=O双键和-COO形式的酸性官能团分解为C-O官能团;OV改性还增加了光催化活性位点,减少了电子空穴对复合概率,从而提高了对NO的光催化降解效率。
  • 图  1  实验装置示意图

    Figure  1  Schematic diagram of the experimental setup

    图  2  BC/Bi和BC/Bi-OV的SEM照片

    Figure  2  SEM images of BC/Bi and BC/Bi-OV

    图  3  BC/Bi和BC/Bi-OV的XRD谱图

    Figure  3  XRD patterns of the BC/Bi and BC/Bi-OV

    图  4  BC/Bi和BC/Bi-OV XPS全谱图、Bi 4f谱图、BC/Bi和BC/Bi-OV的C 1s分峰

    Figure  4  (a) XPS full spectra, (b) Bi 4f spectra of the BC/Bi and BC/Bi-OV, (c) C 1s peaks of BC/Bi, (d) C 1s peaks of BC/Bi-OV

    图  5  BC/Bi和BC/Bi-OV的PL发射光谱(λex=354 nm)和Uv-vis吸收光谱谱图

    Figure  5  PL emission spectra (λex=354 nm) (a) and Uv-vis absorption spectra (b) of BC/Bi and BC/Bi-OV

    图  6  温度对BC/Bi-OV脱硝效率的影响

    Figure  6  Effect of temperature on the denitration efficiency

    图  7  光照强度对BC/Bi-OV脱硝效率和OV改性的影响

    Figure  7  Effect of light intensity on denitrification efficiency over BC/Bi-OV (a) and effect of OV modification on the denitrification efficiency (b)

    图  8  BC/Bi-OV的脱硝机理示意图

    Figure  8  Reaction mechanism for the NO degradation over BC/Bi-OV

    表  1  基于XPS光谱C 1s不同官能团的相对含量

    Table  1  Relative content of various functional groups based on the C 1s XPS spectra

    Functional group /% Binding energy E/eV Half peak width E/eV Relative content w/%
    BC/Bi BC/Bi-OV
    Graphite carbon 284.3±0.2 1.4±0.2 14.14 26.98
    C-O 285.0±0.5 2.0±0.3 18.61 36.01
    C=O 286.5±0.4 2.3±0.2 45.39 15.00
    -COO 288.5±0.4 2.1±0.5 14.71 4.43
    π-π* 290.4±0.3 2.6±0.3 7.15 17.58
    下载: 导出CSV
  • [1] LERDAU M T, MUNGER J W, JACOB D J. The NO2 flux conundrum[J]. Science, 2000, 289(5488): 2291-2293. doi: 10.1126/science.289.5488.2291
    [2] RODRIGUEZ J A, JIRSAK T, LIU G, HRBEK J, DVORAK J, MAITI A. Chemistry of NO2 on oxide surfaces: Ormation of NO3 on TiO2(110) and NO2 O vacancy interactions[J]. J Am Chem Soc, 2001, 123(39): 9597. doi: 10.1021/ja011131i
    [3] KIM C H, QI G, DAHLBERG K, LI W. Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust[J]. Science, 2010, 327(5973): 1624-1627. doi: 10.1126/science.1184087
    [4] MA L, LI J, KE R, FU L. Catalytic performance, characterization, and mechanism study of Fe2 (SO4)3/TiO2 catalyst for selective catalytic reduction of NOx by ammonia[J]. J Phys Chem C, 2011, 115(15): 7603-7612. doi: 10.1021/jp200488p
    [5] AI Z, HO W, LEE S, ZHANG L. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environ Sci Technol, 2009, 43(11): 4143-4150. doi: 10.1021/es9004366
    [6] DONG F, SUN Y, FU M, WU Z, LEE S C. Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers[J]. J Hazard Mater, 2012, 219: 26-34. http://www.ncbi.nlm.nih.gov/pubmed/22502896
    [7] WU T, LI X, ZHANG D, DONG F, CHEN S. Efficient visible light photocatalytic oxidation of NO with hierarchical nanostructured 3D flower-like BiOClxBr1-x solid solutions[J]. J Alloys Compd, 2016, 671: 318-327. doi: 10.1016/j.jallcom.2016.01.267
    [8] SHAMAILA S, SAJJAD A K L, CHEN F, ZHANG J. WO3/BiOCl, a novel heterojunction as visible light photocatalyst[J]. J Colloid Interface Sci, 2011, 356(2): 465-472. doi: 10.1016/j.jcis.2011.01.015
    [9] CHANG X, YU G, HUANG J, LI Z, ZHU S, YU P, JI G. Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy[J]. Catal Today, 2010, 153(3): 193-199. http://www.sciencedirect.com/science/article/pii/S092058611000163X
    [10] LIU Y, SON W J, LU J, HUANG B, DAI Y, WHANGBO M H. Composition dependence of the photocatalytic activities of BiOCl1-xBrx solid solutions under visible light[J]. Chem-Eur J, 2011, 17(34): 9342-9349. doi: 10.1002/chem.v17.34
    [11] WANG W, HUANG F, LIN X, YANG J. Visible-light-responsive photocatalysts xBiOBr-(1-x) BiOI[J]. Catal Commun, 2008, 9 (1): 8-12. doi: 10.1016/j.catcom.2007.05.014
    [12] CHENG H, HUANG B, DAI Y, QIN X, ZHANG X. One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances[J]. Langmuir, 2010, 26(9): 6618-6624. doi: 10.1021/la903943s
    [13] ZHANG X, ZHANG L, XIE T, WANG D. Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures[J]. J Phys Chem C, 2009, 113(17): 7371-7378. doi: 10.1021/jp900812d
    [14] LI T B, CHEN G, ZHOU C, SHEN Z Y, JIN R C, SUN J X. New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances[J]. Dalton Trans, 2011, 40(25): 6751-6758. doi: 10.1039/c1dt10471c
    [15] REN L, ZHANG D, HAO X, XIAO X, JIANG Y, GONG J, TONG Z. Facile synthesis of flower-like Pd/BiOCl/BiOI composites and photocatalytic properties[J]. Mater Res Bull, 2017. http://www.sciencedirect.com/science/article/pii/S0025540817301617
    [16] JIANG G, WANG X, WEI Z, LI X, XI X, HU R, CHEN W. Photocatalytic properties of hierarchical structures based on Fe-doped BiOBr hollow microspheres[J]. J Mater Chem A, 2013, 1(7): 2406-2410. doi: 10.1039/c2ta00942k
    [17] YE L, LIU J, GONG C, TIAN L, PENG T, ZAN L. Two different roles of metallic Ag on Ag/AgX/BiOX (X= Cl, Br) visible light photocatalysts: Surface plasmon resonance and Z-scheme bridge[J]. Acs Catal, 2012, 2(8): 1677-1683. doi: 10.1021/cs300213m
    [18] WANG J, WANG Z, HUANG B, MA Y, LIU Y, QIN X, DAI Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO[J]. ACS Appl Mater Interfaces, 2012, 4(8): 4024-4030. doi: 10.1021/am300835p
    [19] HUANG Y, LI H, BALOGUN M S, LIU W, TONG Y, LU X, JI H. Oxygen vacancy induced bismuth oxyiodide with remarkably increased visible-light absorption and superior photocatalytic performance[J]. ACS Appl Mater Interfaces, 2014, 6(24): 22920-22927. doi: 10.1021/am507641k
    [20] 苗苗, 李和兴. 非常规技术合成铋系可见光催化剂及其性能研究[D]. 上海: 上海师范大学, 2011. http://d.wanfangdata.com.cn/Thesis/Y1868462

    MIAO Miao, LI He-xing. Synthesis and characterization of bismuth based visible light catalysts by unconventional techniques[D]. Shanghai: Shanghai Normal University SHNU, 2011. http://d.wanfangdata.com.cn/Thesis/Y1868462
    [21] 崔静, 李家俊, 赵乃勤, 师春生, 杜希文, 韩森.以除尘灰分离碳粉制备活性炭的新方法研究[J].离子交换与吸附, 2006, 22(1): 25-32.

    CUI Jing, LI Jia-jun, ZHAO Nai-qin, SHI Chun-sheng, DU Xi-wen, HAN Seng. A new method for preparing activated carbon by separating carbon powder with dust[J]. Ion Exch Adsorpt, 2006, 22(1): 25-32.
    [22] LIU Y, XU J, WANG L, ZHANG H, XU P, DUAN X, WANG S. Three-dimensional BiOI/BiOX (X= Cl or Br) nanohybrids for enhanced visible-light photocatalytic activity[J]. Nanomaterials-Basel, 2017, 7(3): 64. doi: 10.3390/nano7030064
    [23] GUO Y, LI Y, ZHU T, YE M. Effects of concentration and adsorption product on the adsorption of SO2 and NO on activated carbon[J]. Energy Fuels, 2013, 27(1): 360-366. doi: 10.1021/ef3016975
    [24] WANG S, GUAN Y, WANG L, ZHAO W, HE H, XIAO J, SUN C. Fabrication of a novel bifunctional material of BiOI/Ag3VO4, with high adsorption-photocatalysis for efficient treatment of dye wastewater[J]. Appl Catal B: Environ, 2015, 168/169: 448-457. doi: 10.1016/j.apcatb.2014.12.047
    [25] FAN W, LI H, ZHAO F, XIAO X, HUANG Y, JI H, TONG Y. Boosting the photocatalytic performance of (001) BiOI: Enhancing donor density and separation efficiency of photogenerated electrons and holes[J]. Chem Commun, 2016, 52(30): 5316-5319. doi: 10.1039/C6CC00903D
    [26] AN X, JIMMY C Y. Graphene-based photocatalytic composites[J]. RSC Adv, 2011, 1(8): 1426-1434. doi: 10.1039/c1ra00382h
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  38
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-04
  • 修回日期:  2017-10-24
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-12-10

目录

    /

    返回文章
    返回