留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合型镍锌纳米线脱硫剂的制备及其脱硫性能研究

康蕾 王海彦 邵河 孙娜 王钰佳 杨占旭

康蕾, 王海彦, 邵河, 孙娜, 王钰佳, 杨占旭. 复合型镍锌纳米线脱硫剂的制备及其脱硫性能研究[J]. 燃料化学学报(中英文), 2018, 46(5): 551-557.
引用本文: 康蕾, 王海彦, 邵河, 孙娜, 王钰佳, 杨占旭. 复合型镍锌纳米线脱硫剂的制备及其脱硫性能研究[J]. 燃料化学学报(中英文), 2018, 46(5): 551-557.
KANG Lei, WANG Hai-yan, SHAO He, SUN Na, WANG Yu-jia, YANG Zhan-xu. Study on the synthesis of composite NiO-ZnO nanowire adsorbent and its performance for desulfurization[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 551-557.
Citation: KANG Lei, WANG Hai-yan, SHAO He, SUN Na, WANG Yu-jia, YANG Zhan-xu. Study on the synthesis of composite NiO-ZnO nanowire adsorbent and its performance for desulfurization[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 551-557.

复合型镍锌纳米线脱硫剂的制备及其脱硫性能研究

基金项目: 

国家自然科学基金 21401093

辽宁省自然科学基金 201202126

详细信息
  • 中图分类号: TE643

Study on the synthesis of composite NiO-ZnO nanowire adsorbent and its performance for desulfurization

Funds: 

the National Natural Science Foundation of China 21401093

Natural Science Foundation of Liaoning 201202126

More Information
    Corresponding author: WANG Hai-yan, Tel: 13941336296, E-mail: fswhy@126.com
  • 摘要: 采用水热法合成了复合型镍锌纳米线脱硫剂,考察了溶剂中水和乙醇的比例对复合型镍锌纳米线晶体结构和形貌的影响,通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等方法对脱硫剂进行了表征;以正庚烷-噻吩为模型化合物,在反应温度为350℃、压力1.0 MPa、进料的体积空速6 h-1及氢油体积比为60的条件下,考察了复合型镍锌纳米线脱硫剂、负载型镍锌纳米线脱硫剂以及纯氧化锌纳米线脱硫剂的脱硫性能。结果表明,由于复合型镍锌纳米线脱硫剂具有良好的纳米线形貌,活性组分金属镍具有更好的分散性、更小的粒径,同时形成了有利于脱硫的NiZn合金,所以其脱硫性能明显高于负载型镍锌纳米线脱硫剂和纯氧化锌纳米线脱硫剂,达到98%;而且复合型镍锌纳米线脱硫剂经过五次再生后,其使用寿命仍能保持90 h,这说明复合型镍锌纳米线脱硫剂具有很好的再生性能。
  • 图  1  三种复合型镍锌纳米线脱硫剂的SEM照片

    Figure  1  SEM images of three composite NiO-ZnO nanowires adsorbents

    (a): the solvent was water; (b): the solvent were water and ethanol; (c): the solvent was ethanol

    图  2  复合型镍锌纳米线脱硫剂的元素分布

    Figure  2  Elemental mapping of composite NiO-ZnO nanowires adsorbents

    (a): the solvent was water; (b): the solvent were water and ethanol

    图  3  三种复合型镍锌纳米线脱硫剂的XRD谱图

    Figure  3  XRD patterns of three composite NiO-ZnO nanowire adsorbents

    : the solvent was water; b: the solvent were water and ethanol; c: the solvent was ethanol

    图  4  五种脱硫剂脱硫率随时间的变化

    Figure  4  Desulfurization rate curves of five adsorbents

    a, b, c: composite NiO-ZnO nanowires adsorbent; d: supported NiO/ZnO nanowires adsorbent; e: pure ZnO nanowires adsorbent

    图  5  三种脱硫剂反应前的XRD谱图

    Figure  5  XRD patterns of three adsorbents before reaction

    c: composite NiO-ZnO nanowires adsorbent; d: supported NiO/ZnO nanowires adsorbent; e: pure ZnO nanowires adsorbent

    图  6  三种脱硫剂反应后的XRD谱图

    Figure  6  XRD patterns of three adsorbents after reaction

    c: composite NiO-ZnO nanowires adsorbent; d: supported NiO/ZnO nanowires adsorbent; e: pure ZnO nanowires adsorbent

    图  7  三种脱硫剂的SEM照片

    Figure  7  SEM of three adsorbents

    c: composite NiO-ZnO nanowires adsorbent; d: supported NiO/ZnO nanowires adsorbent; e: pure ZnO nanowires adsorbent

    图  8  三种脱硫剂的TEM照片

    Figure  8  TEM of three adsorbents

    c: composite NiO-ZnO nanowires adsorbent; d: supported NiO/ZnO nanowires adsorbent; e: pure ZnO nanowires adsorbent

    图  9  复合型镍锌纳米线脱硫剂的元素分析

    Figure  9  EDS of composite NiO-ZnO nanowires adsorbent

    图  10  复合型镍锌纳米线脱硫剂的重复使用性能

    Figure  10  Reusability of Composite NiO-ZnO nanowires adsorbent

  • [1] ULLAH R, BAI P, WU P, ETIM U J, ZHANG Z, HAN D, SUBHAN F, ULLAH S, ROOD M, YAN Z F. Superior performance of freeze-dried Ni/ZnO-Al2O3 adsorbent in the ultra-deep desulfurization of high sulfur model gasoline[J]. Fuel Process Technol, 2017, 156:505-514. doi: 10.1016/j.fuproc.2016.10.022
    [2] KONG A H, WEI Y Y, LI Y H. Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation[J]. Front Chem Sci Eng, 2013, 7(2):170-176. doi: 10.1007/s11705-013-1322-9
    [3] 王广建, 李佳佳, 吴春泽, 王芳. TiO2-Al2O3复合载体的制备及Co-Mo/TiO2-Al2O3催化剂加氢脱硫性能的研究[J].燃料化学学报, 2016, 44(12):1518-1522. doi: 10.3969/j.issn.0253-2409.2016.12.016

    WANG Guang-jian, LI Jia-jia, WU Chun-ze, WANG Fang. Study on the preparation of TiO2-Al2O3 composite support and its application in Co-Mo/TiO2-Al2O3 catalyst for hydro-desulfurization[J]. J Fuel Chem Technol, 2016, 44(12):1518-1522. doi: 10.3969/j.issn.0253-2409.2016.12.016
    [4] AHMEDZEKI N S, ALHUSSAINI M M, ALNAAMA A A J, ALBAYATI I S. Reactive adsorption desulfurization by nanocrystalline ZnO/Zeolite a molecular sieves[J]. J Eng, 2017, 23(9):38-49. https://www.researchgate.net/profile/nada_Ahmedzeki3
    [5] TAWARA K, NISHIMURA T, IWANAMI H, NISHIMOTO T, HASUIKE T. New hydrodesulfurization catalyst for petroleum-fed fuel cell vehicles and cogenerations[J]. Ind Eng Chem Res, 2001, 40(10):2367-2370. doi: 10.1021/ie000453c
    [6] GE H, TANG M, WEN X D. Ni/ZnO nano sorbent for reactive adsorption desulfurization of refinery oil streams[M]//Applying nanotechnology to the desulfurization process in petroleum engineering. IGI Global, 2016:216-239. https://www.igi-global.com/chapter/nizno-nano-sorbent-for-reactive-adsorption-desulfurization-of-refinery-oil-streams/139162
    [7] HUANG L, QIN Z, WANG G, DU M, GE H, LI X, WANG J. A detailed study on the negative effect of residual sodium on the performance of Ni/ZnO adsorbent for diesel fuel desulfurization[J]. Ind Eng Chem Res, 2010, 49(10):4670-4675. doi: 10.1021/ie100293h
    [8] REN Z, GUO Y, WROBEL G, KNECHT D A, ZHANG Z, GAO H, GAO P X. Three dimensional koosh ball nanoarchitecture with a tunable magnetic core, fluorescent nanowire shell and enhanced photocatalytic property[J]. J Mater Chem, 2012, 22(14):6862-6868. doi: 10.1039/c2jm16489b
    [9] JIAN D, GAO P X, CAI W, ALLIMI B S, ALPAY S P, DING Y, BROOKS C. Synthesis, characterization, and photocatalytic properties of ZnO/(La, Sr) CoO3 composite nanorod arrays[J]. J Mater Chem, 2009, 19(7):970-975. doi: 10.1039/b817235h
    [10] REN Z, BOTU V, WANG S, MENG Y, SONG W, GUO Y, GAO P X. Monolithically integrated spinel MxCo3-xO4 (M=Co, Ni, Zn) nanoarray catalysts:Scalable synthesis and cation manipulation for tunable low-temperature CH4 and CO oxidation[J]. Angew Chem Int Edit, 2014, 53(28):7223-7227. doi: 10.1002/anie.201403461
    [11] WANG S, WU Y, MIAO R, ZHANG M, LU X, ZHANG B, SIUB S L. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization[J]. Crystengcomm, 2017, 19(34):5128-5136. doi: 10.1039/C7CE00921F
    [12] YANG P, YAN H, MAO S, RUSSO R, JOHNSON J, SAYKALLY R, CHOI H J. Controlled growth of ZnO nanowires and their optical properties[J]. Adv Funct Mater, 2002, 12(5):323-331. doi: 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
    [13] GUPTA M, HE J, NGUYEN T, PETZOLD F, FONSECA D, JASINSKI J B, SUNKARA M K. Nanowire catalysts for ultra-deep hydro-desulfurization and aromatic hydrogenation[J]. Appl Catal B:Environ, 2016, 180:246-254. doi: 10.1016/j.apcatb.2015.06.029
    [14] PETZOLD F G, JASINSKI J, CLARK E L, KIM J, ABSHER J, TOUFAR H, SUNKARA M K. Nickel supported on zinc oxide nanowires as advanced hydrodesulfurization catalysts[J]. Catal Today, 2012, 198(1):219-227. doi: 10.1016/j.cattod.2012.05.030
    [15] 向群, 潘庆谊, 徐甲强.溶剂热制备氧化锌纳米线[J].无机化学学报, 2007, 23(2):369-372. https://www.researchgate.net/profile/Jiaqiang_Xu3/publication/291850424_Solvothermal_synthesis_of_ZnO_nanowires/links/57415ba608ae9f741b34e7ac.pdf?origin=publication_detail

    Xiang Qun, Pan Qing-yi, Xu Jian-qiang. Solvothermal synthesis of ZnO nanowires[J]. Chin J Inorg Chem, 2007, 23(2):369-372. https://www.researchgate.net/profile/Jiaqiang_Xu3/publication/291850424_Solvothermal_synthesis_of_ZnO_nanowires/links/57415ba608ae9f741b34e7ac.pdf?origin=publication_detail
    [16] LI W J, SHI E W, ZHONG W Z, YIN Z W. Growth mechanism and growth habit of oxide crystals[J]. J Cryst Growth, 1999, 203(1):186-196. https://www.sciencedirect.com/science/article/pii/S0022024899000767
    [17] KAR S, DEV A, CHAUDHURI S. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays[J]. J Phys Chem B, 2006, 110(36):17848-17853. doi: 10.1021/jp0629902
    [18] ZHANG Z, SHAO C, LI X, WANG C, ZHANG M, LIU Y. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity[J]. ACS Appl Mat Interfaces, 2010, 2(10):2915-2923. doi: 10.1021/am100618h
    [19] YADAV R S, PANDEY A C, SANJAY S S. ZnO porous structures synthesized by CTAB-assisted hydrothermal process[J]. Struct Chem, 2007, 18(6):1001-1004. doi: 10.1007/s11224-007-9251-1
    [20] ZONG Y, LI Z, WANG X, MA J, MEN Y. Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles[J]. Ceram Int, 2014, 40(7):10375-10382. doi: 10.1016/j.ceramint.2014.02.123
    [21] CASARIN M C, MACCATO A, VITTADINI. An LCAO-LDF study of the chemisorption of H2O and H2S on ZnO(0001) and ZnO(1010)[J]. Surf Sci, 1997, 377:587-591. https://www.sciencedirect.com/science/article/pii/0039602895011579
    [22] ZHANG Y, YANG Y, HAN H, YANG M, WANG L, ZHANG Y, LI C. Ultra-deep desulfurization via reactive adsorption on Ni/ZnO:The effect of ZnO particle size on the adsorption performance[J]. Appl Catal B:Environ, 2012, 119:13-19. https://www.sciencedirect.com/science/article/pii/S0926337312000525
    [23] BABICH I V, MOULIJN J A. Science and technology of novel processes for deep desulfurization of oil refinery streams:A review[J]. Fuel, 2003, 82(6):607-631. doi: 10.1016/S0016-2361(02)00324-1
  • 加载中
图(10)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  25
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-19
  • 修回日期:  2018-02-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-05-10

目录

    /

    返回文章
    返回