留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于程序升温氢化表征的Ni-Al2O3催化剂上CO2-CH4重整反应积炭研究

莫文龙 马凤云 刘景梅 钟梅 艾沙·努拉洪

莫文龙, 马凤云, 刘景梅, 钟梅, 艾沙·努拉洪. 基于程序升温氢化表征的Ni-Al2O3催化剂上CO2-CH4重整反应积炭研究[J]. 燃料化学学报(中英文), 2019, 47(5): 549-557.
引用本文: 莫文龙, 马凤云, 刘景梅, 钟梅, 艾沙·努拉洪. 基于程序升温氢化表征的Ni-Al2O3催化剂上CO2-CH4重整反应积炭研究[J]. 燃料化学学报(中英文), 2019, 47(5): 549-557.
MO Wen-long, MA Feng-yun, LIU Jing-mei, ZHONG Mei, AISHA·Nulahong. A study on the carbonaceous deposition on Ni-Al2O3 catalyst in CO2-CH4 reforming on the basis of temperature-programmed hydrogenation characterization[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 549-557.
Citation: MO Wen-long, MA Feng-yun, LIU Jing-mei, ZHONG Mei, AISHA·Nulahong. A study on the carbonaceous deposition on Ni-Al2O3 catalyst in CO2-CH4 reforming on the basis of temperature-programmed hydrogenation characterization[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 549-557.

基于程序升温氢化表征的Ni-Al2O3催化剂上CO2-CH4重整反应积炭研究

基金项目: 

新疆维吾尔自治区自然科学基金 2018D01C034

新疆维吾尔自治区高校科研计划项目 XJEDU2018Y001

详细信息
  • 中图分类号: O643.32

A study on the carbonaceous deposition on Ni-Al2O3 catalyst in CO2-CH4 reforming on the basis of temperature-programmed hydrogenation characterization

Funds: 

the Natural Science Foundation of Xinjiang Uyghur Autonomous Region 2018D01C034

the University Research Project of Xinjiang Uygur Autonomous Region XJEDU2018Y001

More Information
  • 摘要: 采用水热沉积法制备Ni-Al2O3催化剂,用于CO2-CH4重整反应;基于程序升温氢化(TPH)表征,研究了反应时间、温度、原料气CO2/CH4比例和空速等因素对CO2-CH4重整反应过程中Ni-Al2O3催化剂上表面积炭行为的影响。结果表明,表面积炭是导致催化剂重整反应失活的重要原因。随反应时间的延长,催化剂表面积炭量增多,虽未成比例增加,但其TPH峰温有向高温方向移动的趋势,表明所积之炭的石墨化程度增加。反应温度和空速对催化剂表面积炭也有一定影响,且空速的影响更大。另外,由于CO2消炭反应(CO2+C=2CO)的存在,CO2/CH4比例对表面积炭的影响也很大。CO2/CH4比例太低,不能明显抑制积炭;随着CO2/CH4比例增加,积炭将得到有效抑制,但CO2/CH4比例过高,CO2在产物中的分离和回收再利用将使成本增加。
  • 图  1  催化剂评价装置示意图

    Figure  1  Schematic diagram of the catalyst evaluation device

    图  2  固定床空反应管CO2-CH4重整性能

    Figure  2  Conversions of CO2 and CH4 for the CO2-CH4 reforming in the empty fixed bed reactor without loading any catalyst at 800 ℃, 0.1 MPa, GHSV = 14400 h-1, and CO2/CH4 =1

    图  3  重整反应CO2和CH4转化率随时间的变化

    Figure  3  Conversions of CO2 and CH4 for the CO2-CH4 reforming over the Ni-Al2O3 catalyst for different reaction times at 800 ℃, 0.1 MPa, GHSV = 14400 h-1, and CO2/CH4 =1

    图  4  不同时间重整反应试样的TPH谱图

    Figure  4  TPH profiles of various spent Ni-Al2O3 catalysts after carrying out the CO2-CH4 reforming reaction for different times

    图  5  催化剂反应10 h后表面积炭实物示意图

    Figure  5  Photos of the carbon deposited after carrying out the CO2-CH4 reforming reaction for 10 h

    (a): carbon deposited on the thermocouple tube;
    (b): carbon on the Ni-Al2O3 catalyst;
    (c): carbon on the wiping paper from thermocouple tube

    图  6  反应10 h后催化剂的热重分析曲线

    Figure  6  TG curves of the fresh Ni-Al2O3 catalyst and the spent one after carrying out the CO2-CH4 reforming for 10 h

    图  7  不同反应时间下催化剂表面积炭的TEM照片

    Figure  7  TEM images of various spent Ni-Al2O3 catalysts after carrying out the CO2-CH4 reforming reaction for different times

    (a): fresh; (b): 0.5 h; (c): 1 h; (d): 2 h; (e): 5 h; (f): 10 h

    图  8  不同温度下重整反应的转化率随温度的变化

    Figure  8  Conversions of CO2 and CH4 for the CO2-CH4 reforming over the Ni-Al2O3 catalyst under different temperatures after reaction for 10 h at 0.1 MPa, GHSV = 14400 h-1, and CO2/CH4 =1

    图  9  不同温度下重整反应后试样的TPH谱图

    Figure  9  TPH profiles of the spent Ni-Al2O3 catalysts after carrying out the CO2-CH4 reforming reaction under different temperatures

    图  10  不同空速下重整反应转化率和选择性随空速的变化

    Figure  10  Conversions of CO2 and CH4 for the CO2-CH4 reforming over the Ni-Al2O3 catalyst under different GHSVs after reaction for 10 h at 800 ℃, 0.1 MPa, and CO2/CH4 =1

    图  11  不同空速下重整反应后试样的TPH谱图

    Figure  11  TPH profiles of the spent Ni-Al2O3 catalysts after carrying out the CO2-CH4 reforming reaction under different GHSVs

    图  12  不同CO2/CH4比例下试样重整反应的活性评价

    Figure  12  Conversions of CO2 and CH4 for the CO2-CH4 reforming over the Ni-Al2O3 catalyst under different CO2/CH4 ratios after reaction for 10 h at 800 ℃, 0.1 MPa, and GHSV=14400 h-1

    图  13  不同CO2/CH4比例下重整反应后试样的TPH谱图

    Figure  13  TPH profiles of the spent Ni-Al2O3 catalysts after carrying out the CO2-CH4 reforming reaction under different CO2/CH4 ratios

  • [1] MILICH L. The role of methane in global warming:Where might mitigation strategies be focused?[J]. Global Environ Change, 1999, 9(3):179-201. doi: 10.1016/S0959-3780(98)00037-5
    [2] LAOSIRIPOJANA N, ASSABUMRUNGRAT S. Catalytic dry reforming of methane over high surface area ceria[J]. Appl Catal B:Environ, 2005, 60(1):107-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2d4fbfd1f2ae03d4e2027b36ea285314
    [3] THERDTHIANWONG S, THERDTHIANWON A, SIANGCHIN C, YONGPRAPAT S. Synthesis gas production from dry reforming of methane over Ni/Al2O3 stabilized by ZrO2[J]. Int J Hydrogen Energy, 2008, 33(3):991-999. doi: 10.1016/j.ijhydene.2007.11.029
    [4] OYAMA S T, HACARLIOGLU P, GU Y F, LEE D. Dry reforming of methane has no future for hydrogen production:Comparison with steam reforming at high pressure in standard and membrane reactors[J]. Int J Hydrogen Energy, 2012, 37(13):10444-10450. doi: 10.1016/j.ijhydene.2011.09.149
    [5] SUN H J, HUANG J, WANG H, ZHANG J G. CO2 reforming of CH4 over xerogel Ni-Ti and Ni-Ti-Al catalysts[J]. Ind Eng Chem Res, 2007, 46(13):4444-4450. doi: 10.1021/ie070049e
    [6] WANG S B, LU G Q. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts:State of the art[J]. Energy Fuels, 1996, 10:896-904. doi: 10.1021/ef950227t
    [7] KOLESNICHENKO N V, GORYAINOVA T I, BIRYUKOVA E N, YASHINA O V, KHADZHIEV S N. Synthesis of lower olefins from dimethyl ether in the presence of zeolite catalysts modified with rhodium compounds[J]. Pet Chem, 2011, 51(1):55-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d733db51c4b4d28cc306a69baaaaa92c
    [8] GORYAINOVA T I, BIRYUKOVA E N, KOLESNICHENKO N V, KHADZHIEV S N. Study of magnesium-containing zeolite catalysts for the synthesis of lower olefins from dimethyl ether[J]. Pet Chem, 2011, 51(3):169-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=721435bf14182893005cee4426d7c0c6
    [9] JIN L J, LI Y, LIN P, HU H Q. CO2 reforming of methane on Ni/γ-Al2O3 catalyst prepared by dielectric barrier discharge hydrogen plasma[J]. Int J Hydrogen Energy, 2014, 39(11):5756-5763. doi: 10.1016/j.ijhydene.2014.01.171
    [10] JABBOUR K, EL HASSAN N, CASALE S, ESTEPHANE J, EL ZAKHEM H. Promotional effect of Ru on the activity and stability of Co/SBA-15 catalysts in dry reforming of methane[J]. Int J Hydrogen Energy, 2014, 39(15):7780-7787. doi: 10.1016/j.ijhydene.2014.03.040
    [11] MOLINA R, PONCELET G.α-alumina-supported nickel catalysts prepared from nickel acetylacetonate:A TPR study[J]. J Catal, 1998, 173:257-267. doi: 10.1006/jcat.1997.1931
    [12] YANG R C, LI X G, WU J S, ZHANG X, ZHANG Z H, CHENG Y F, GUO J T. Hydrotreating of crude 2-ethylhexanol over Ni/Al2O3 catalysts:Surface Ni species-catalytic activity correlation[J]. Appl Catal A:Gen, 2009, 368:105-112. doi: 10.1016/j.apcata.2009.08.021
    [13] SONG K, LU M M, XU S P, CHEN C Q, ZHAN, Y Y, LI D L, AU C, JIANG L L, TOMISHIGE K. Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane[J]. Appl Catal B:Environ, 2018, 239:324-333. doi: 10.1016/j.apcatb.2018.08.023
    [14] STUBL D R, PROPHET H. JANAF Thermachemical Tables, NSRDS-NBS 37, Washington D.C, 1971.
    [15] GADDALLA A M, SOMMER M E. Carbon dioxide reforming of methane on nickel catalysts[J]. Chem Eng Sci, 1989, 44(12):2825-2829. doi: 10.1016/0009-2509(89)85092-4
    [16] WANG H Y, RUCKENSTEIN E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts:the effect of support[J]. Appl Catal A:Gen, 2000, 204(1):143-152. doi: 10.1016/S0926-860X(00)00547-0
    [17] CHEN Q J, ZHANG J, PAN B R, KONG W B, CHEN Y Y, ZHANG W L, SUN Y H. Temperature-dependent anti-coking behaviors of highly stable Ni-CaO-ZrO2 nanocomposite catalysts for CO2 reforming of methane[J]. Chem Eng J, 2017, 320:63-73. doi: 10.1016/j.cej.2017.03.029
    [18] MO W L, MA F Y, LIU Y E, LIU J M, AISHA·NULAHONG. Preparation of porous Al2O3 by template method and its application in Ni-based catalyst for CH4/CO2 reforming to produce syngas[J]. Int J Hydrogen Energy, 2015, 40(46):16147-16158. doi: 10.1016/j.ijhydene.2015.09.149
    [19] WANG C Z, SUN N N, WEI W, ZHANG Y X. Carbon intermediates during CO2 reforming of methane over Ni-CaO-ZrO2 catalysts:A temperature-programmed surface reaction study[J]. Int J Hydrogen Energy, 2016, 41(42):19014-19024. doi: 10.1016/j.ijhydene.2016.08.128
    [20] BODROV I M, APELBAUM L O. Reaction kinetics of methane and carbon dioxide on a nickel surface[J]. Kinet Catal, 1967, 8(2):379.
    [21] LI D L, XU S P, SONG K, CHEN C Q, ZHAN Y Y, JIANG L L. Hydrotalcite-derived Co/Mg(Al)O as a stable and coke-resistant catalyst for low-temperature carbon dioxide reforming of methane[J]. Appl Catal A:Gen, 2018, 552:21-29. doi: 10.1016/j.apcata.2017.12.022
    [22] DAI C Y, ZHANG S H, ZHANG A F, SONG C S, SHI C, GUO X W. Hollow zeolite encapsulated Ni-Pt bimetals for sintering and coking resistant dry reforming of methane[J]. J Mater Chem A, 2015, 3(32):16461-16468. doi: 10.1039/C5TA03565A
    [23] WANG R, XU H Y, LIU X B, GE Q J, LI W Z. Role of redox couples of Rh0/Rhδ+ and Ce4+/Ce3+ in CH4/CO2 reforming over Rh-CeO2/Al2O3 catalyst[J]. Appl Catal A:Gen, 2006, 305(2):204-210. doi: 10.1016/j.apcata.2006.03.021
    [24] KIM J H, SUH D J, PARK T J, KIM K L. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts[J]. Appl Catal A:Gen, 2000, 197(2):191-200. doi: 10.1016/S0926-860X(99)00487-1
    [25] SOUZA M M V M, ARANDA D A G, SCHMAL M. Coke formation on Pt/ZrO2/Al2O3 catalysts during CH4 reforming with CO2[J]. Ind Eng Chem Res, 2002, 41(18):4681-4685. doi: 10.1021/ie010970a
  • 加载中
图(14)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  48
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-18
  • 修回日期:  2019-03-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-05-10

目录

    /

    返回文章
    返回