留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions

LI Zuo-peng SHANG Jian-peng SU Cai-na ZHANG San-bing WU Mei-xia GUO Yong

李作鹏, 尚建鹏, 苏彩娜, 张三兵, 武美霞, 郭永. 非晶态NiP基催化剂的制备及电催化析氢性能研究[J]. 燃料化学学报(中英文), 2018, 46(4): 473-478.
引用本文: 李作鹏, 尚建鹏, 苏彩娜, 张三兵, 武美霞, 郭永. 非晶态NiP基催化剂的制备及电催化析氢性能研究[J]. 燃料化学学报(中英文), 2018, 46(4): 473-478.
LI Zuo-peng, SHANG Jian-peng, SU Cai-na, ZHANG San-bing, WU Mei-xia, GUO Yong. Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 473-478.
Citation: LI Zuo-peng, SHANG Jian-peng, SU Cai-na, ZHANG San-bing, WU Mei-xia, GUO Yong. Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 473-478.

非晶态NiP基催化剂的制备及电催化析氢性能研究

基金项目: 

The project was supported by National Natural Science Foundation of China 21073113

Natural Science Foundation of Shanxi 201701D121016

Science, Technology Innovation Project of Shanxi Province University 2015178

Science, Technology Innovation Project of Shanxi Province University 2016172

Natural Science Foundortion of Datong 2015108

详细信息
  • 中图分类号: TK91

Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions

Funds: 

The project was supported by National Natural Science Foundation of China 21073113

Natural Science Foundation of Shanxi 201701D121016

Science, Technology Innovation Project of Shanxi Province University 2015178

Science, Technology Innovation Project of Shanxi Province University 2016172

Natural Science Foundortion of Datong 2015108

More Information
  • 摘要: 以NaH2PO2和Ni2SO4为磷源和镍源,使用一锅法合成了非晶态NiP合金及其碳纳米(乙炔黑和石墨烯)复合催化剂。用透射电子显微镜(TEM)、X射线衍射仪(XRD)、热重分析(TGA)、电感耦合等离子体光谱仪(ICP)分别对催化剂性能和组成进行了表征和分析。通过线性扫描伏安对催化剂在酸性和碱性条件下的析氢性能进行了评价,研究结果表明,非晶态NiP/还原氧化石墨烯复合催化剂(NiP/RGO)展现出优异的电催化性能。在0.5 mol/L H2SO4中的起始过电位为89.0 mV,塔菲尔斜率为135.1 mV/decade;在1 mol/L NaOH中,起始过电位为116.1 mV,塔菲尔斜率为122.4 mV/decade,这与商业化Pt黑催化剂很接近。500次循环以后,催化剂活性没有明显下降,表明该催化剂具有良好的稳定性。该研究提供了一种简单可行的制备非贵金属磷化物方法用于电催化析氢反应。
  • Figure  1  TEM of NiP, composite electrocatalysts, the insert shows the diffraction pattern and the amorphous nature of the nanoparticles

    Figure  2  TEMs of NiP/RGO composite electrocatalysts

    Figure  3  TEMs of NiP/C composite electrocatalysts

    (a): NiP/C-20%; (b): NiP/C-80%

    Figure  4  XRD patterns of NiP, NiP/RGO and NiP/C-20% composite electrocatalysts

    Figure  5  TGA of NiP/RGO and NiP/C composite

    Figure  6  (a) Polarization curves and (b) corresponding Tafel plots of Pt, GC, pure amorphous NiP and NiP based catalysts in 0.5 mol/L H2SO4 acidic solution; (c) and (d) in 1 mol/L NaOH alkaline solution, scan rate of 10 mV/s

    Figure  7  Electrochemical stability of NiP/RGO electrocatalysts in 0.5 mol/L H2SO4 solution(a); in 1 mol/L NaOH solution(b), scan rate of 50 mV/s

    Table  1  ICP results of NiP, NiP/RGO and NiP/C composite electrocatalysts

    Entry Elements w/% Composition
    NiP Ni 88.0 Ni80P20
    P 12.0
    NiP/RGO Ni 87.3 Ni78P22
    P 12.7
    NiP/C Ni 87.0 Ni78P22
    P 13.0
    下载: 导出CSV

    Table  2  HER performance of NiP-based electrocatalysts in acidic and basic solution

    Electrolyte Overpotential (mV) Pure NiP NiP/C-20% NiP/C-80% NiP/RGO Pt black
    Acidic condition Onset overpotential (mV) 149.8 54.8 112.8 89.0 2.0
    Overpotential (mV)100 mA·cm-2 733.0 403.8 473.8 471.8 99.4
    Tafel slope (mV/decade) 279.8 85.1 84.6 135.1 51.2
    Basic condition Onset overpotential (mV) 330.0 185.1 185.2 116.1 29.0
    Overpotential (mV)100 mA·cm-2 753.1 506.2 505.6 475.0 352.1
    Tafel slope (mV/decade) 249.1 177.1 177.1 122.4 105.1
    下载: 导出CSV
  • [1] DUNN S. Hydrogen futures:Toward a sustainable energy system[J]. Int J Hydrogen Energy, 2002, 27(3):235-264. doi: 10.1016/S0360-3199(01)00131-8
    [2] NEJAT V T, SUEMER S. 21st Century's energy:Hydrogen energy system[J]. Energy Convers Manage, 2008, 49(7):1820-1831. doi: 10.1016/j.enconman.2007.08.015
    [3] SHERIF S A, BARBIR F, VEZIROGLU T N. Wind energy and the hydrogen economy-review of the technology[J]. Sol Energy, 2005, 78(5):647-660. doi: 10.1016/j.solener.2005.01.002
    [4] EFTEKHARI A. Electrocatalysts for hydrogen evolution reaction[J]. Int J Hydrogen Energy, 2017, 42(16):11053-11077. doi: 10.1016/j.ijhydene.2017.02.125
    [5] WANG J, XU F, JIN H, CHEN Y, WANG Y. Non-noble metal-based carbon composites in hydrogen evolution reaction:Fundamentals to applications[J]. Adv Mater, 2017, 29(14):1605838. doi: 10.1002/adma.v29.14
    [6] ZHENG Y, JIAO Y, ZHU Y, LI L, HAN Y, CHEN Y, DU A, JARONIEC M, QIAO S. Hydrogen evolution by a metal-free electrocatalyst[J]. Nat Commun, 2014, 5(4):3783. https://eprints.qut.edu.au/70605/
    [7] POPCZUN E J, MCKONE J R, READ C G, BIACCHI A J, WILTROUT A M, LEWIS N S, SCHAAK R E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. J Am Chem Soc, 2013, 135(25):9267-9270. doi: 10.1021/ja403440e
    [8] XIAO P, CHEN W, WANG X. A review of phosphide-based materials for electrocatalytic hydrogen evolution[J]. Adv Energy Mater, 2015, 5(24):1500985. doi: 10.1002/aenm.201500985
    [9] SHI Y, ZHANG B. Recent advances in transition metal phosphide nanomaterials:Synthesis and applications in hydrogen evolution reaction[J]. Chem Soc Rev, 2016, 25(6):1529-1541. https://www.ncbi.nlm.nih.gov/pubmed/26806563
    [10] ANDARAARACHCHI H P, THOMPSON M J, WHITE M A, FAN H, VELA J. Phase-programmed nanofabrication:Effect of organophosphite precursor reactivity on the evolution of nickel and nickel phosphide nanocrystals[J]. Chem Mater, 2015, 27(23):8021-8031. doi: 10.1021/acs.chemmater.5b03506
    [11] LI D, SENEVIRATHNE K, AQUILINA L, BROCK S L. Effect of synthetic levers on nickel phosphide nanoparticle formation:Ni5P4 and NiP2[J]. Inorg Chem, 2015, 54(16):7968-7975. doi: 10.1021/acs.inorgchem.5b01125
    [12] PAN Y, LIU Y, ZHAO J, YANG K, LIANG J, LIU D, HU W, LIU D, LIU Y, LIU C. Monodispersed nickel phosphide nanocrystals with different phases:Synthesis, characterization and electrocatalytic properties for hydrogen evolution[J]. J Mater Chem A, 2015, 3(4):1656-1665. doi: 10.1039/C4TA04867A
    [13] PAN Y, HU W, LIU D, LIU Y, LIU C. Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction[J]. J Mater Chem A, 2015, 3(24):13087-13094. doi: 10.1039/C5TA02128F
    [14] PAN Y, LIU Y, LIU C. Nanostructured nickel phosphide supported on carbon nanospheres:Synthesis and application as an efficient electrocatalyst for hydrogen evolution[J]. J Power Sources, 2015, 285:169-177. doi: 10.1016/j.jpowsour.2015.03.097
    [15] LIN Y, ZHANG J, PAN Y, LIU Y. Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution[J]. Appl Surf Sci, 2017, 422:828-837. doi: 10.1016/j.apsusc.2017.06.102
    [16] PAN Y, YANG N, CHEN Y, LIN Y, LI Y, LIU Y, LIU C. Nickel phosphide nanoparticles nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity[J]. J Power Sources, 2015, 297:45-52. doi: 10.1016/j.jpowsour.2015.07.077
    [17] WANG P, PU Z, LI Y, WU L, TU Z, JIANG M, KOU Z, SAANA AMⅡNU I, MU S. Iron-doped nickel phosphide nanosheet arrays:an efficient bifunctional electrocatalyst for water splitting[J]. ACS Appl Mater Interfaces, 2017, 9(31):26001-26007. doi: 10.1021/acsami.7b06305
    [18] OYAMA S T. Novel catalysts for advanced hydroprocessing:transition metal phosphides[J]. J Catal, 2003, 216(1):343-352. https://www.sciencedirect.com/science/article/pii/S0021951702000696
    [19] SAWHILL S J, PHILLIPS D C, BUSSELL M E. Thiophene hydrodesulfurization over supported nickel phosphide catalysts[J]. J Catal, 2003, 215(2):208-219. doi: 10.1016/S0021-9517(03)00018-6
    [20] OYAMA S T, LEE Y. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4, 6-DMDBT[J]. J Catal, 2008, 258(2):393-400. doi: 10.1016/j.jcat.2008.06.023
    [21] MERKI D, HU X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts[J]. Energy Environ Sci, 2011, 4(10):3878-3888. doi: 10.1039/c1ee01970h
    [22] PRINS R, DE BEER V H J, SOMORJAI G A. Structure and function of the fatalyst and the promoter in Co-Mo hydrodesulfurization catalysts[J]. Catal Rev, 1989, 31(1/2):1-41. https://www.narcis.nl/publication/RecordID/oai:library.tue.nl:620424
    [23] MA Q, SONG J, JIN C, LI Z, LIU J, MENG S, ZHAO J, GUO Y. A rapid and easy approach for the reduction of graphene oxide by formamidinesulfinic acid[J]. Carbon, 2013, 54(8):36-41. https://www.sciencedirect.com/science/article/pii/S0008622312008809
    [24] WAN L, ZHANG J, CHEN Y, ZHONG C, HU W, DENG Y. Nickel phosphide nanosphere:A high-performance and cost-effective catalyst for hydrogen evolution reaction[J]. Int J Hydrogen Energy, 2016, 41(45):20515-20522. doi: 10.1016/j.ijhydene.2016.08.146
    [25] YANG L, WU X, ZHU X, HE C, MENG GAN Z, CHU P K. Amorphous nickel/cobalt tungsten sulfide electrocatalysts for high-efficiency hydrogen evolution reaction[J]. Appl Surf Sci, 2015, 341:149-156. doi: 10.1016/j.apsusc.2015.03.018
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  24
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-13
  • 修回日期:  2018-02-02
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-04-10

目录

    /

    返回文章
    返回