留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Essential role of promoter Co on the MoS2 catalyst in selective hydrodesulfurization of FCC gasoline

LIU Bin LIU Lei CHAI Yong-ming ZHAO Jin-chong LIU Chen-guang

刘宾, 刘蕾, 柴永明, 赵晋翀, 刘晨光. Co调变MoS2催化剂的作用本质及其FCC汽油选择性加氢脱硫机理[J]. 燃料化学学报(中英文), 2018, 46(4): 441-450.
引用本文: 刘宾, 刘蕾, 柴永明, 赵晋翀, 刘晨光. Co调变MoS2催化剂的作用本质及其FCC汽油选择性加氢脱硫机理[J]. 燃料化学学报(中英文), 2018, 46(4): 441-450.
LIU Bin, LIU Lei, CHAI Yong-ming, ZHAO Jin-chong, LIU Chen-guang. Essential role of promoter Co on the MoS2 catalyst in selective hydrodesulfurization of FCC gasoline[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 441-450.
Citation: LIU Bin, LIU Lei, CHAI Yong-ming, ZHAO Jin-chong, LIU Chen-guang. Essential role of promoter Co on the MoS2 catalyst in selective hydrodesulfurization of FCC gasoline[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 441-450.

Co调变MoS2催化剂的作用本质及其FCC汽油选择性加氢脱硫机理

基金项目: 

the National Natural Science Foundation of China U1662119

the National Natural Science Foundation of China 21776314

the National Key Research and Development Program of China 2017YFB0306600

the Shandong Provincial Natural Science Foundation of China ZR2016BL22

the Qingdao Applied Basic Research Project 17-1-1-73-jch

the Fundamental Research Funds for the Central Universities 17CX02061

the State Key Laboratory of Heavy Oil Processing SLKZZ-2017005

详细信息
  • 中图分类号: O643

Essential role of promoter Co on the MoS2 catalyst in selective hydrodesulfurization of FCC gasoline

Funds: 

the National Natural Science Foundation of China U1662119

the National Natural Science Foundation of China 21776314

the National Key Research and Development Program of China 2017YFB0306600

the Shandong Provincial Natural Science Foundation of China ZR2016BL22

the Qingdao Applied Basic Research Project 17-1-1-73-jch

the Fundamental Research Funds for the Central Universities 17CX02061

the State Key Laboratory of Heavy Oil Processing SLKZZ-2017005

More Information
  • 摘要: 采用含硫前驱体四硫代钼酸铵直接构建MoS2催化剂,通过调变Co/Mo原子比深入认识Co调变MoS2催化剂的作用本质及其FCC汽油选择性加氢脱硫机理。借助XRD、HRTEM、XPS、H2-TPR和Py-FTIR表征发现,Co/Mo原子比能够影响催化剂的活性相微观结构组成,从而影响催化剂的加氢脱硫活性和选择性。当Co/Mo(atomic ratio) < 0.2时,助剂Co原子倾向于占据MoS2相的边角位而形成CoMoS活性相,明显提高了催化剂的加氢脱硫活性;当0.2 < Co/Mo(atomic ratio) < 0.6时,助剂Co在催化剂表面形成适量的Co9S8相,其产生的溢流氢能提高硫化物的脱除活性而对烯烃饱和活性的影响较小;当Co/Mo(atomic ratio)>0.6时,过量的Co会形成大颗粒的Co9S8相,阻碍硫化物和烯烃与催化剂活性中心的接触,从而降低催化剂的活性和选择性。
  • Figure  1  XRD patterns of the CoMo/γ-Al2O3 catalysts prepared with different Co/Mo atomic ratios

    Figure  2  HRTEM images of the sulfided CoMo/γ-Al2O3 catalysts obtained with different Co/Mo atomic ratios

    Figure  3  XPS spectra of the Co 2p for the sulfided Co/Mo(0.56) and Co/Mo(1) catalysts

    Figure  4  H2-TPR profiles of the sulfided CoMo/γ-Al2O3 catalysts with different Co/Mo atomic ratios

    Figure  5  Py-FTIR spectra of pyridine adsorbed on the sulfided CoMo/γ-Al2O3 catalysts with different Co/Mo atomic ratios

    Figure  6  Schematic representation of the Co/Mo atomic ratios effect on the structure of the active phase and the HDS selectivity

    Table  1  HDS activity and selectivity of the CoMo/γ-Al2O3 catalysts prepared with different Co/Mo atomic ratios

    Sample HYD /% kHYD /(g-1· h-1) HDS /% kHDS/(g-1 · h-1) S
    M(N) 12.8 0.548 35.4 1.748 3.2
    Co/Mo(0.1) 13.6 0.585 65.4 4.245 7.3
    Co/Mo(0.2) 13.9 0.599 80.5 6.539 10.9
    Co/Mo(0.5) 14.1 0.608 91.4 9.814 16.1
    Co/Mo(0.56) 14.3 0.617 93.5 10.933 17.7
    Co/Mo(0.6) 14.4 0.622 91.9 10.053 16.2
    Co/Mo(1) 12.8 0.548 86.2 7.922 14.5
    下载: 导出CSV

    Table  2  Characteristics of the morphology of all the catalysts

    Sample Average slab length L/nm Average stacking number N
    M(N) 4.95 3.59
    M(HS) 4.77 3.51
    Co/Mo(0.2) 4.67 3.82
    Co/Mo(1) 4.59 3.85
    下载: 导出CSV

    Table  3  XPS parameters of the different contributions Co 2p obtained for the sulfided CoMo/γ-Al2O3 catalysts with different Co/Mo atomic ratios

    Catalyst Co9S8 CoMoS Co (Ⅱ)
    E/eV w/% E/eV w/% E/eV w/%
    Co/Mo(0.1) - - 778.7 80.9 781.5 19.1
    Co/Mo(0.2) 778.2 2.3 778.7 85.2 781.5 12.5
    Co/Mo(0.5) 778.1 23.9 778.6 50.2 781.4 25.9
    Co/Mo(0.56) 778.2 32.3 778.7 44.6 781.5 23.1
    Co/Mo(0.6) 778.1 34.2 778.6 41.7 781.4 24.1
    Co/Mo(1) 778.1 53.9 778.6 24.7 781.3 21.4
    下载: 导出CSV

    Table  4  Relative peak areas with dimensionless of the Brønsted acid sites at 1540 cm-1 and Lewis acid sites at 1450 cm-1 of the CoMo/γ-Al2O3 catalysts

    Sample AL/gcat AB/gcat
    Co/Mo(0.1) 21.8 16.4
    Co/Mo(0.2) 21.1 17.9
    Co/Mo(0.56) 38.1 25.9
    Co/Mo(0.6) 38.0 23.6
    Co/Mo(1) 30.6 12.6
    下载: 导出CSV
  • [1] SONG C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003, 86(1/4):211-263. http://dns2.asia.edu.tw/~ysho/YSHO-English/1000 WC/PDF/Cat Tod86, 211.pdf
    [2] BERHAULT G, ROSA M P D I, METHA A, YÁCAMAN M J, CHIANELLI R R. The single-layered morphology of supported MoS2-based catalysts-The role of the cobalt promoter and its effects in the hydrodesulfurization of dibenzothiophene[J]. Appl Catal A:Gen, 2008, 345(1):80-88. doi: 10.1016/j.apcata.2008.04.034
    [3] ASUA J M, DELMON B. Separation of the kinetic terms in catalytic reactions with varying number of active sites (case of the remote control model)[J]. Appl Catal, 1984, 12(2):249-262. doi: 10.1016/S0166-9834(00)80295-X
    [4] PORTELA L, GRANGE P, DELMON B. XPS and NO adsorption studies on alumina-supported Co-Mo catalysts sulfided by different procedures[J]. J Catal, 1995, 156(2):243-254. doi: 10.1006/jcat.1995.1251
    [5] DELMON B, FROMENT G. Remote control of catalytic sites by spillover species:A chemical reaction engineering approach[J]. Catal Rev, 1996, 38(1):69-100. doi: 10.1080/01614949608006454
    [6] TOPSØE, CLAUSEN B S, TOPSØE N Y, ZEUTHEN P. Progress in the design of hydrotreating catalysts based on fundamental molecular insight[J]. Stud Surf Sci Catal, 1989, 53(1):77-102. https://www.sciencedirect.com/science/article/pii/S0167299108610617
    [7] TOPSØE H, CLAUSEN B S, CANDIA R, WIVEL C, MØRUP S. In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts:Evidence for and nature of a CoMoS phase[J]. J Catal, 1981, 68(2):433-452. doi: 10.1016/0021-9517(81)90114-7
    [8] TOPSØE N Y, TOPSØE H. Characterization of the structures and active sites in sulfided CoMo/Al2O3 and NiMo/Al2O3 catalysts by NO chemisorption[J]. J Catal, 1983, 84(2):386-401. doi: 10.1016/0021-9517(83)90010-6
    [9] OKAMOTO Y, OCHIAI K, KAWANO M, KUBOTA T. Evaluation of the maximum potential activity of Co-Mo/Al2O3 catalysts for hydrodesulfurization[J]. J Catal, 2004, 222(1):143-151. doi: 10.1016/j.jcat.2003.10.024
    [10] VILLARROEL M, BAEZA P, GRACIA F, EXCALONA N, AVILA P, GIL-LLAMBÍAS F J. Phosphorus effect on Co//Mo and Ni//Mo synergism in hydrodesulphurization catalysts[J]. Appl Catal A:Gen, 2009, 364(1/2):75-79. https://www.sciencedirect.com/science/article/pii/S187258131360033X
    [11] PIMERZIN A A, ISHUTENKO D I, MOZHAEV A V, KAPUSTIN V M, CHERNYSHEVA E A, MAXIMOVA A V, PIMERZIN A A, NIKULSHIN P A. Comparable investigation of spillover and cobalt promoter effects in CoMoS/CoSx/SiO2 catalysts for selective hydrotreating of model FCC gasoline[J]. Fuel Process Technol, 2017, 156(2):98-106. https://www.researchgate.net/scientific-contributions/72110378_J_C_Jumas
    [12] OJEDA J, ESCALONA N, BAEZA P, ESCUDEY M, GIL-LLAMBÍAS F J. Synergy between Mo/SiO2 and Co/SiO2 beds in HDS:a remote control effect[J]. Chem Commun, 2003, 9(13):1608-1609. https://udesantiago.pure.elsevier.com/en/publications/synergy-between-mosiosub2sub-and-cosiosub2sub-beds-in-hds-a-remot
    [13] INAMURA K, PRINS R. The role of Co in unsupported Co-Mo sulfides in the hydrodesulfurization of thiophene[J]. J Catal, 1994, 147(2):515-524. doi: 10.1006/jcat.1994.1168
    [14] OKAMOTO Y, HIOKA K, ARAKAWA K, FUJIKAWA T, EBIHARA T, KUBOTA T. Effect of sulfidation atmosphere on the hydrodesulfurization activity of SiO2-supported Co-Mo sulfide catalysts:Local structure and intrinsic activity of the active sites[J]. J Catal, 2009, 268(1):49-59. doi: 10.1016/j.jcat.2009.08.017
    [15] ALABI W, ATANDA L, JERMY R, AL-KHATTAF S. Kinetics of toluene alkylation with methanol catalyzed by pure and hybridized HZSM-5 catalysts[J]. Chem Eng J, 2012, 195/196:276-288. doi: 10.1016/j.cej.2012.04.100
    [16] BEZVERKHYY I, AFANASIEV P, LACROIX M. Promotion of highly loaded MoS2/Al2O3 hydrodesulfurization catalysts prepared in aqueous solution[J]. J Catal, 2005, 230(1):133-139. doi: 10.1016/j.jcat.2004.12.009
    [17] AN G, LIU Y, CHAI Y, SHANG H, LIU C. Synthesis, characterization and thermal decomposition mechanism of cetyltrimethyl ammonium tetrathiotungstate[J]. J Nat Gas Chem, 2006, 15(2):127-133. doi: 10.1016/S1003-9953(06)60019-4
    [18] WANG H W, SKELDON P, THOMPSON G E, WOOD G C. Synthesis and characterization of molybdenum disulphide formed from ammonium tetrathiomolybdate[J]. J Mater Sci, 1997, 32(2):497-502. doi: 10.1023/A:1018538424373
    [19] ZHANG F and VASUDEVAN P T. TPD, HYD Studies of unpromoted and Co-promoted molybdenum sulfide catalyst Ex ammonium tetrathiomolybdate[J]. J Catal, 1995, 157(2):536-544. doi: 10.1006/jcat.1995.1317
    [20] LIU B, CHAI Y, LI Y, WANG A, LIU Y, LIU C. Effect of sulfidation atmosphere on the performance of the CoMo/γ-Al2O3 catalysts in hydrodesulfurization of FCC gasoline[J]. Appl Catal A:Gen, 2014, 471:70-79. doi: 10.1016/j.apcata.2013.11.017
    [21] LIU B, LIU L, WANG Z, CHAI Y, LIU H, YIN C, LIU C. Effect of hydrogen spillover in selective hydrodesulfurization of FCC gasoline over the CoMo catalyst[J]. Catal Today, 2017, 282:14-221. https://www.sciencedirect.com/science/article/pii/S0920586116305260
    [22] LI M, LI H, JIANG F, CHU Y, NIE H. The relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalysts[J]. Catal Today, 2010, 149(1/2):35-39. http://www.syxbsyjg.com/EN/abstract/abstract934.shtml
    [23] NAVA R, MORALES J, ALONSO G, ORNELAS C, PAWELEC B, FIERRO J L G. Influence of the preparation method on the activity of phosphate-containing CoMo/HMS catalysts in deep hydrodesulphurization[J]. Appl Catal A:Gen, 2007, 321(1):58-70. doi: 10.1016/j.apcata.2007.01.038
    [24] YUE L, LI G, ZHANG F, CHEN L, LI X, HUANG X. Size-dependent activity of unsupported Co-Mo sulfide catalysts for the hydrodesulfurization of dibenzothiophene[J]. Appl Catal A:Gen, 2016, 512:85-92. doi: 10.1016/j.apcata.2015.12.016
    [25] YU Q, ZHANG L, GUO R, SUN J, FU W, TANG T, TANG T. Catalytic performance of CoMo catalysts supported on mesoporous ZSM-5 zeolite-alumina composites in the hydrodesulfurization of 4, 6-dimethyldibenzothiophene[J]. Fuel Process Technol, 2017, 159:76-87. doi: 10.1016/j.fuproc.2017.01.023
    [26] ALATRUP I, CHORKENDORFF I, CANDIA R. A combined X-Ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported Co-Mo catalysts[J]. J Catal, 1982, 77(2):397-409. doi: 10.1016/0021-9517(82)90181-6
    [27] RAMOS M, BERHAULT G, FERRER D A, TORRES B, CHIANELLI R R. HRTEM and molecular modeling of the MoS2-Co9S8 interface:Understanding the promotion effect in bulk HDS catalysts[J]. Catal Sci Technol, 2012, 2(1):164-178. doi: 10.1039/C1CY00126D
    [28] AFANASIEV P. On the interpretation of temperature programmed reduction patterns of transition metals sulphides[J]. Appl Catal A:Gen, 2006, 303(1):110-115. doi: 10.1016/j.apcata.2006.02.014
    [29] YOOSUK B, KIM J H, SONG C, NGAMCHARUSSRIVICHAI C, PRASASSARAKICH P. Highly active MoS2, CoMoS2 and NiMoS2 unsupported catalysts prepared by hydrothermal synthesis for hydrodesulfurization of 4, 6-dimethyldibenzothiophene[J]. Catal Today, 2008, 130(1):14-23. doi: 10.1016/j.cattod.2007.07.003
    [30] MOCHIZUKI T, ITOU H, TOBA M, MIKI Y, YOSHIMURA Y. Effects of acidic properties on the catalytic performance of como sulfide catalysts in selective hydrodesulfurization of gasoline fractions[J]. Energy Fuels, 2008, 22(3):1456-1462. doi: 10.1021/ef700644e
    [31] KALLINIKOS L E, JESS A, PAPAYANNAKOS N G. Kinetic study and H2S effect on refractory DBTs desulfurization in a heavy gasoil[J]. J Catal, 2010, 269(1):169-178. doi: 10.1016/j.jcat.2009.11.005
    [32] BRUNET S, MEY D, PÉROT G, BOUCHY C, DIEHL F. On the hydrodesulfurization of FCC gasoline:A review[J]. Appl Catal A:Gen, 2005, 278(2):143-172. doi: 10.1016/j.apcata.2004.10.012
    [33] HO T C. Hydrodenitrogenation catalysis[J]. Cat Rev Sci Eng, 1988, 30:117-160. doi: 10.1080/01614948808078617
    [34] BESENBACHER F, BRORSON M, CLAUSEN B S, HELVEG S, HINNEMANN B, KIBSGAARD J, LAURITSEN J V, MOSES P G, NØRSKOV J K, TOPSØE H. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts:Insight into mechanistic, structural and particle size effects[J]. Catal Today, 2008, 130(1):86-96. doi: 10.1016/j.cattod.2007.08.009
    [35] MOSES P G, HINNEMANN B, TOPSØE H, NØRSKOV J K. The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions:A density functional study[J]. J Catal, 2007, 248(2):188-203. doi: 10.1016/j.jcat.2007.02.028
    [36] HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, VAN DER KRAAN A M, DE BEER V H J, VAN VEEN J A R, VAN SANTEN R A. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001, 199(2):224-235. doi: 10.1006/jcat.2000.3158
    [37] GONZÁLEZ-CORTÉS S L, XIAO T, COSTA P M F J, FONTAL B, GREEN M L H. Urea-organic matrix method:An alternative approach to prepare CoMoS2/γ-Al2O3 HDS catalyst[J]. Appl Catal A:Gen, 2004, 270(1/2):209-222. https://www.researchgate.net/profile/Sergio_Gonzalez-Cortes
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  36
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-21
  • 修回日期:  2018-02-26
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-04-10

目录

    /

    返回文章
    返回