留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni-based catalysts obtained from perovskites oxides for ethanol steam reforming

Agüero Fabiola Nerina Alonso Jose Antonio Fernández-Díaz Maria Teresa Cadus Luis Eduardo

Agüero Fabiola Nerina, Alonso Jose Antonio, Fernández-Díaz Maria Teresa, Cadus Luis Eduardo. Ni-based catalysts obtained from perovskites oxides for ethanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1332-1341.
Citation: Agüero Fabiola Nerina, Alonso Jose Antonio, Fernández-Díaz Maria Teresa, Cadus Luis Eduardo. Ni-based catalysts obtained from perovskites oxides for ethanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1332-1341.

详细信息
  • 中图分类号: O643

Ni-based catalysts obtained from perovskites oxides for ethanol steam reforming

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  Catalytic performance of perovskite catalysts during 9 h on stream

    ● : ethanol conversion; ▲ : H2 yield; : CO selectivity; ◇ : CO2 selectivity; ■ : CH4 selectivity

    Figure  2  TG results of catalysts used in ethanol steam reforming reaction

    a: LaMgNi1; b: LaMgNi2; c: LaMgNi3

    Figure  3  SEM images of used catalysts

    (a): LaMgNi1; (b): LaMgNi2; (c): LaMgNi3

    Figure  4  X-ray diffraction patterns of samples calcined at 800 ℃

    Figure  5  H2-TPR profiles of LaMgNi1, LaMgNi2, LaMgNi3 and NiO/LaAlO3

    Figure  6  Neutron powder diffraction Rietveld profiles of LaMgNiy for (a) y=0.1, (b) y=0.2 and (c) y=0.3

    Figure  7  A view of the crystal structure of LaMgNi2 at RT, defined as a superstructure of perovskite consisting of a framework of slightly tilted (Al, Ni)O6 octahedra with La atoms in the voids

    Table  1  BET specific surface area, H2 consumption from TPR, Ni content from ICP-OES and weight loss from TG

    Catalyst ABET/(m2·g-1) H2 consumption/(μmol·mgNi-1) Ni content w/% Weight loss w/%
    LaAlO3 14 - -
    La0.9Mg0, 1AlO3 15 - -
    NiO/LaAlO3 17 0.63 3.3 (2.8)*
    LaMgNi1 13 2.16 2.2 (2.8) 6
    LaMgNi2 10 2.04 3.4 (5.6) 7
    LaMgNi3 8 1.39 5.2 (8.3) 15
    *: (values between brackets correspond to nominal ones)
    下载: 导出CSV

    Table  2  Structural parameters for the perovskites with nominal composition La0.9Mg0.1Al1-yNiyO3, refined in the rhombohedral R3c (no. 167) space group at 25 ℃ from NPD data

    Ni contents y= 0.1 y= 0.2 y= 0.3
    a 5.3670(6) 5.3735(5) 5.3821(5)
    c 13.139(2) 13.149(2) 13.149(2)
    v3 327.75(8) 328.79(7) 329.86(6)
    La/Mg 6a (0 0 1/4)
    focc La/Mg 0.99(2)/0.01(2) 1.00(2)/0.00(2) 0.99(2)/0.01(2)
    B2 0.36(4) 0.36(3) 0.31(3)
    (Al, Ni) 6b (0 0 0)
    focc Al/Ni 0.95(1)/0.05(1) 0.936(4)/0.064(1) 0.810(2)/0.190(2)
    B2 0.49(6) 0.47(5) 0.88(3)
    O 18e (x 0 1/4)
    x 0.4751(2) 0.4737(2) 0.4717(2)
    focc 1.0 1.0 1.0
    B2 0.69(3) 0.77(2) 0.88(3)
    Fraction main phase 96.6(1) 93.8(1) 93.1(1)
    Fraction MgO 1.2(1) 0.6(1) 2.7(1)
    Fraction NiO 2.2(1) 5.6(1) 4.2(1)
    Reliability factors
    χ2 2.20 5.22 2.22
    Rp/% 2.82 2.60 2.82
    Rwp/% 2.27 3.61 2.12
    RI/% 2.48 1.58 1.77
    下载: 导出CSV

    Table  3  Main interatomic distances (Å) and selected angles (°) for the perovskites with nominal composition La0.9Mg0.1Al1-yNiyO3

    Ni content y=0.1 y= 0.2 y= 0.3
    (Al, Ni)-O    ×6 1.9018(7) 1.9044(7) 1.9073(8)
    O-(Ni, Mo)-O 90.16(4) 90.20(4) 90.28(5)
    (Ni, Mo)-O-(Ni, Mo) 171.94(2) 171.50(2)
    下载: 导出CSV

    Table  4  XPS results of catalysts

    Catalyst n(Ni)
    /n(La+Mg+Al)
    n(Mg)
    /n(La+Ni+Al)
    n(Oad)
    /n(Ol)
    LaMgNi1 0.048 (0.05)* 0.05 (0.05) 0.15
    LaMgNi2 0.091 (0.11) 0.07 (0.05) 0.18
    LaMgNi3 0.131 (0.176) 0.095 (0.05) 0.22
    *: values between brackets correspond to nominal ones
    下载: 导出CSV
  • [1] CHORKENDORFF I, NIEMANTSVERDRIET J W. Concepts of Modern Catalysis and Kinetics[M]. Wiley Editorial. 2003.
    [2] ARAMOUNI A K, TOUMA J G, TARBOUSH B A, ZEAITER J M. Catalyst design for dry reforming of methane:Analysis review[J]. Renewable Sustainable Energy Rev, 2017, 82(part 3):2570-2585.
    [3] CHOI S O, MOON S H. Performance of La1-xCexFe0.7Ni0.3O3 perovskite catalysts for methane steam reforming[J]. Catal Today, 2009, 146(1):148-153. http://www.sciencedirect.com/science/article/pii/S0920586109001187
    [4] PALCHEVA R, OLSBYE U, PALCUT M, RAUWEL P, TYULIEV G, VELINOV N, FJELLVÄG H H, Rh promoted La0.75Sr0.25(Fe0.8Co0.2)1-xGaxO3-δ perovskite catalysts:Characterization and catalytic performance for methane partial oxidation to synthesis gas[J]. Appl Surf Sci, 2015, 357(part A):45-54. http://adsabs.harvard.edu/abs/2015ApSS..357...45P
    [5] NI M, LEUNG D, LEUNG M, A review on reforming bio-ethanol for hydrogen production[J]. Int J Hydrogen Energy, 2007, 32(15):3238-3247. doi: 10.1016/j.ijhydene.2007.04.038
    [6] PEREIRA E B, RAMÍREZ D E L A, PISCINA P, MARTI S, HOMS N. H2 production by oxidative steam reforming of ethanol over K promoted Co-Rh/CeO2-ZrO2 catalysts[J]. Energy Environ Sci, 2010, 3:487-493. doi: 10.1039/b924624j
    [7] HAN X, YU Y, HE H, SHAN W. Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Ce-La solid solution[J]. Int J Hydrogen Energy, 2013, 38(25):10293-10304. doi: 10.1016/j.ijhydene.2013.05.137
    [8] COSTA L O, VASCONCELOS S M, PINTO A L, SILVA A M, MATTOS L V, NORONHA F B. Rh/CeO2 catalyst preparation and characterization for hydrogen production from ethanol partial oxidation[J]. J Mater Sci, 2008, 43(2):440-449. doi: 10.1007/s10853-007-1982-2
    [9] KRALEVA E, SOKOLOV S, NASILLO G, BENTRUP U, EHRICH H. Catalytic performance of CoAlZn and NiAlZn mixed oxides in hydrogen production by bio-ethanol partial oxidation[J]. Int J Hydrogen Energy, 2014, 39(1):209-220. doi: 10.1016/j.ijhydene.2013.10.072
    [10] BEYHAN S, LÉGER J M, KADIRGAN F. Understanding the influence of Ni, Co, Rh and Pd additionto PtSn/C catalyst for the oxidation of ethanol by in situ Fourier transform infrared spectroscopy[J]. Appl Catal B:Environ, 2014, 144:66-74. doi: 10.1016/j.apcatb.2013.07.020
    [11] CHEN H Q, YU H, YANG G X, PENG F, WANG H J, WANG J. Auto-thermal ethanol micro-reformer with a structural Ir/La2O3/ZrO2 catalyst for hydrogen production[J]. Chem Eng J, 2011, 167(1):322-327. doi: 10.1016/j.cej.2010.12.077
    [12] SILVA A M, COSTA L O, BARANDAS A P, BORGES L E, MATTOS L V, NORONHA F B. Effect of the metal nature on the reaction mechanism of the partial oxidation of ethanol over CeO2-supported Pt and Rh catalysts[J]. Catal Today, 2008, 133-135:755-761. doi: 10.1016/j.cattod.2007.12.103
    [13] FRUSTERI F, FRENI S. Bio-ethanol, a suitable fuel to produce hydrogen for a molten carbonate fuel cell[J]. J Power Sources, 2007, 173(1):200-209. doi: 10.1016/j.jpowsour.2007.04.065
    [14] BION N, EPRON F, DUPREZ D. Bioethanol reforming for H2 production. A comparison with hydrocarbon reforming[J]. Catalysis, 2010, 22:1-55. http://pubs.rsc.org/en/Content/Chapter/9781847559630-00001/978-1-84755-963-0
    [15] HARYANTO A, FERNANDO S, MURALI N, ADHIKARI S. Current status of hydrogen production techniques by steam reforming of ethanol:A Review[J]. Energy Fuels, 2005, 19(5):2098-2106. doi: 10.1021/ef0500538
    [16] BENGAARD H S, NORSKOV J K, SEHESTED J, CLAUSEN B S, NIELSEN L P, MOLENBROEK A M, ROSTRUP-NIELSEN J R. Steam reforming and graphite formation on Ni catalysts[J]. J Catal, 2002, 209(2):365-384. doi: 10.1006/jcat.2002.3579
    [17] BOROWIECKI T. Nickel catalysts for steam reforming of hydrocarbons; size of crystallites and resistance to coking[J]. Appl Catal, 1982, 4:223-231. doi: 10.1016/0166-9834(82)80104-8
    [18] AGÜERO F, MORALES M R, LARREGOLA S, IZURIETA E, LOPEZ E, CADUS L E. La1-xCaxAl1-yNiyO3 perovskites used as precursors of nickel based catalysts for ethanol steam reforming[J]. Int J Hydrogen Energy, 2015, 40:15510. doi: 10.1016/j.ijhydene.2015.08.051
    [19] COURTY P, AJOT H, MARCILLY C, DELMON B. Oxydes mixtes ou en solution solide sous forme très divisé e obtenus par décomposition thermique de précurseurs amorphes[J]. Powder Technol, 1973, 7(1):21-38. doi: 10.1016/0032-5910(73)80005-1
    [20] RIETVELD H M, A profile refinement method for nuclear and magnetic structures[J]. Appl Crystallogr, 1969, 2:65-71. doi: 10.1107/S0021889869006558
    [21] RODRIGUEZ CARVAJAL. Recent advances in magnetic-structure determination by neutron power diffraction[J]. Phys B, 1993, 192(1/2):55-69. http://adsabs.harvard.edu/abs/1993CCM....41..738B
    [22] WU Y J, DÍAZ ALVARADO F, SANTOS J C, GRACIA F, CUNHA A F, RODRIGUES A E. Sorption-enhanced steam reforming of ethanol:thermodynamic comparison of CO2 sorbents[J]. Chem Eng Technol, 2012, 35(5):847-858. doi: 10.1002/ceat.v35.5
    [23] CUNHA A F, WU Y J, DÍAZ ALVARADO F A, SANTOS J C, VAIDYA P D, RODRIGUES A E. CAN, Steam reforming of ethanol on a Ni/Al2O3 catalyst coupled with a hydrotalcite-like sorbent in a multilayer pattern for CO2 uptake[J]. Can J Chem Eng, 2012, 90(6):1514-1526. doi: 10.1002/cjce.v90.6
    [24] SÁNCHEZ-SÁNCHEZ M C, NAVARRO R M, FIERRO J L G. Ethanol steam reforming over Ni/MxOy-Al2O3 (M-Ce, La, Zr and Mg) catalysts:influence of support on the Hydrogen production[J]. Int J Hydrogen Energy, 2007, 32:1462. doi: 10.1016/j.ijhydene.2006.10.025
    [25] HARDINI D, YOON C, HON J, YOON S, NAM S, LIM T. Influence of preparation methods and OSC on activity and stability[J]. Catal Lett, 2012, 142(2):205-212. doi: 10.1007/s10562-011-0746-4
    [26] RIBEIRO N, NETO R, MOYA S, SOUZA M, SCHMAL M. Synthesis of NiAl2O4 with high surface area as precursor of Ni nanoparticles for hydrogen production[J]. Int J Hydrogen Energy, 2010, 35(21):11725-11732. doi: 10.1016/j.ijhydene.2010.08.024
    [27] GALLEGO G S, MONDRAGÓN F, BARRAULT J, TATIBOUËT J-M, BATIOT-DUPEYRAT C. CO2 reforming of CH4 over La-Ni based perovskite precursors[J]. Appl Catal A:Gen, 2006, 311(1):164-171.
    [28] SIERRA GALLEGO G, MONDRAGON F, TATIBOUËT J-M, BARRAULT J BATIOT-DUPEYRAT, C, Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor and characterization of carbon deposition[J]. Catal Today, 2008, 133-135:200-209. doi: 10.1016/j.cattod.2007.12.075
    [29] JIRATOVA K, MIKULOVA J, KLEMPA J, GRYGAR T, BASTL Z, KOVANDA F. Modification of Co-Mn-Al mixed oxide with potassium and its effect on deep oxidation of VOC[J]. Appl Catal A:Gen, 2009, 361:106-116. doi: 10.1016/j.apcata.2009.04.004
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  20
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-29
  • 修回日期:  2018-09-19
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-11-10

目录

    /

    返回文章
    返回