留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag-Y/MIL-101吸附剂的制备及其吸附脱硫性能

巩明月 宋华

巩明月, 宋华. Ag-Y/MIL-101吸附剂的制备及其吸附脱硫性能[J]. 燃料化学学报(中英文), 2020, 48(2): 240-248.
引用本文: 巩明月, 宋华. Ag-Y/MIL-101吸附剂的制备及其吸附脱硫性能[J]. 燃料化学学报(中英文), 2020, 48(2): 240-248.
GONG Ming-yue, SONG Hua. Preparation of Ag and Y loaded metal-organic framework Ag-Y/MIL-101 and its adsorption desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 240-248.
Citation: GONG Ming-yue, SONG Hua. Preparation of Ag and Y loaded metal-organic framework Ag-Y/MIL-101 and its adsorption desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 240-248.

Ag-Y/MIL-101吸附剂的制备及其吸附脱硫性能

基金项目: 

国家自然科学基金 21276048

黑龙江省自然科学基金 ZD201201

黑龙江省教育厅面上项目 12541060

详细信息
  • 中图分类号: O643.361

Preparation of Ag and Y loaded metal-organic framework Ag-Y/MIL-101 and its adsorption desulfurization performance

Funds: 

the National Natural Science Foundation of China 21276048

the Natural Science Foundation of Heilongjiang Province of China ZD201201

the General Program of Education Department of Heilongjiang Province 12541060

More Information
  • 摘要: 通过银、钇双金属改性制备了Ag-Y/MIL-101吸附剂,并对Ag-Y/MIL-101进行了X射线衍射(XRD)、电镜(SEM-EDS)、比表面积(BET)和热重(TG-DTG)表征。考察了Ag-Y/MIL-101金属负载顺序、金属负载浓度、金属溶液用量、负载时间对脱硫性能的影响,优化了吸附脱硫条件。结果表明,金属改性得到的Ag-Y/MIL-101保持了MIL-101的晶格结构。与MIL-101相比,Ag-Y/MIL-101的比表面积和孔容均有所下降。适宜Ag-Y/MIL-101的制备条件为:先负载银后负载钇,银离子和钇离子的负载浓度均为30 mmol/L,金属溶液用量均为1 mL,负载时间为8 h。适宜Ag-Y/MIL-101的吸附脱硫条件为:吸附剂用量0.05 g,模拟油为10 mL,吸附温度为60℃,吸附时间为8 h。在此条件下,Ag-Y/MIL-101对噻吩的吸附量达到21.7 mg/g。Ag能显著提高MIL-101的吸附硫容,Y能显著提高MIL-101的吸附选择性,因此,Ag-Y/MIL-101吸附剂中Ag和Y的协同作用使其拥有比MIL-101更高的硫容和噻吩脱硫选择性。
  • 图  1  MIL-101和Ag-Y/MIL-101的XRD谱图

    Figure  1  XRD patterns of MIL-101 and Ag-Y/MIL-101

    (a): 2°-10°; (b): 10°-80°

    图  2  MIL-101和Ag-Y/MIL-101的SEM照片

    Figure  2  SEM images of MIL-101 (a) and Ag-Y/MIL-101 (b)

    图  3  MIL-101和Ag-Y/MIL-101的孔径分布图

    Figure  3  Distribution of pore size of MIL-101 and Ag-Y/MIL-101

    图  4  MIL-101和Ag-Y/MIL-101的EDS谱图

    Figure  4  EDS patterns of MIL-101 (a) and Ag-Y/MIL-101 (b)

    图  5  MIL-101和Ag-Y/MIL-101的TG-DTG曲线

    Figure  5  TG-DTG curves of MIL-101 and Ag-Y/MIL-101

    图  6  金属负载顺序对Ag-Y/MIL-101吸附脱硫活性的影响

    Figure  6  Effect of the order of metal loading on the desulfurization performance of Ag-Y/MIL-101

    图  7  Ag+负载浓度对Ag-Y/MIL-101吸附脱硫活性的影响

    Figure  7  Effect of Ag+ loading concentration on adsorptive desulfurization activity of Ag-Y/MIL-101

    图  8  Y3+负载浓度对Ag-Y/MIL-101吸附脱硫活性的影响

    Figure  8  Effect of Y3+ loading concentration on adsorptive desulfurization activity of Ag-Y/MIL-101

    图  9  金属用量对Ag-Y/MIL-101吸附脱硫活性的影响

    Figure  9  Effect of the content of metal on adsorptive desulfurization of Ag-Y/MIL-101

    图  10  金属负载时间对Ag-Y/MIL-101吸附脱硫活性的影响

    Figure  10  Effect of the residence time of metals loading on adsorptive desulfurization of Ag-Y/MIL-101

    图  11  吸附温度对吸附脱硫性能的影响

    Figure  11  Effect of adsorption temperature on adsorptive desulfurization performance

    图  12  吸附时间对吸附脱硫性能的影响

    Figure  12  Effect of adsorption time on adsorptive desulfurization performance

    图  13  甲苯对噻吩的竞争吸附

    Figure  13  Competitive adsorption of thiophene by toluene

    表  1  吸附剂的BET比表面积、孔隙体积和孔径

    Table  1  BET area, pore volume and average pore size of the adsorbents

    Adsorbent BET area A/(m2·g-1) Pore volume v/(cm3·g-1) Average pore size d/nm
    MIL-101 2238 1.43 2.55
    Ag-Y/MIL-101 1759 1.14 2.58
    下载: 导出CSV

    表  2  金属溶液用量对Ag-Y/MIL-101吸附脱硫性能的影响

    Table  2  Effect of the amount of AgNO3 solution and Y(NO3)3 solution on adsorptive desulfurization activity of Ag-Y/MIL-101

    30 mmol/L AgNO3 solution/mL 30 mmol/L Y(NO3)3 solution/mL
    Case1 0.5 0.5
    Case2 1 1
    Case3 2 2
    Case4 3 3
    下载: 导出CSV
  • [1] YANG K, YAN Y, CHEN W, KANG H T, HAN Y, ZHANG W Q, FAN Y F, LI Z X. The high performance and mechanism of metal-organic frameworks and their composites in adsorptive desulfurization[J]. Polyhedron, 2018, 152:202-215. doi: 10.1016/j.poly.2018.06.036
    [2] ULLAH R, BAI P, WU P, LIU B, SUBHAN F, YAN Z. Cation-anion double hydrolysis derived mesoporous mixed oxides for reactive adsorption desulfurization[J]. Microporous Mesoporous Mater, 2017, 238:36-45. doi: 10.1016/j.micromeso.2016.02.037
    [3] RADWAN D R, MATLOOB A, MIKHAIL S, SAAD L, GUIRGUIS D. Metal organic framework-graphene nano-composites for high adsorption removal of DBT as hazard material in liquid fuel[J]. J Hazard Mater, 2019, 373:447-458. doi: 10.1016/j.jhazmat.2019.03.098
    [4] JIANG X S, XU W L, LIU W, YUE M B, ZHU Y Z, YANG M H. Facile preparation of cuprous oxide decorated mesoporous carbon by one-step reductive decomposition for deep desulfurization[J]. Fuel, 2019, 241:777-785. doi: 10.1016/j.fuel.2018.12.107
    [5] GHUBAYRA R, NUTTALL C, HODGKISS S, CRAVEN M, KOZHEVNIKOVA E F, KOZHEVNIKOV I V. Oxidative desulfurization of model diesel fuel catalyzed by carbon-supported heteropoly acids[J]. Appl Catal B:Environ, 2019, 253:309-316. doi: 10.1016/j.apcatb.2019.04.063
    [6] TIAN F P, SHEN Q C, FU Z K, WU Y H, JIA C Y. Enhanced adsorption desulfurization performance over hierarchically structured zeolite Y[J]. Fuel Process Technol, 2014, 128:176-182. doi: 10.1016/j.fuproc.2014.07.018
    [7] LIAO J J, ZHANG Y J, WANG W B, XIE Y Y, CHANG L P. Preparation of γ-Al2O3 sorbents loaded with metal components and removal of thiophene from coking benzene[J]. Adsorption, 2012, 18:181-187. doi: 10.1007/s10450-012-9392-4
    [8] HASAN Z, TONG M M, JUNG B K, AHMED I, ZHONG C L, JHUNG S H. Adsorption of pyridine over amino-functionalized metal-organic frameworks:Attraction via hydrogen bonding versus base-base repulsion[J]. Phys Chem C, 2014, 118(36):21049-21056. doi: 10.1021/jp507074x
    [9] AHMED I, JHUNG S H.Adsorptive desulfurization and denitrogenation using metal-organic frameworks[J]. Hazard Mater, 2016, 301:259-276. doi: 10.1016/j.jhazmat.2015.08.045
    [10] HUANG M H, CHANG G G, SU Y, XING H B, ZHANG Z G, YANG Y W, REN Q L, BAO Z B, CHEN B L. A metal-organic framework with immobilized Ag(I) for highly efficient desulfurization of liquid fuels[J]. Chem Commun, 2015, 51(61):12205-12207. doi: 10.1039/C5CC03648H
    [11] CHEN X, SHEN B X, SUN H, ZHAN G X.Ion-exchange modified zeolites X for selective adsorption desulfurization from Claus tail gas:Experimental and computational investigations[J]. Microporous Mesoporous Mater, 2018, 261:227-236. doi: 10.1016/j.micromeso.2017.11.014
    [12] QIN Y C, MO Z S, YU W G, DONG S W, DUAN L H, GAO X H, SONG L J. Adsorption behaviors of thiophene, benzene, and cyclohexene on FAU zeolites:Comparison of CeY obtained by liquid-, and solid-state ion exchange[J]. Appl Surf Sci, 2014, 292:5-15. doi: 10.1016/j.apsusc.2013.11.036
    [13] LI X J, SONG H, CHANG Y X. Study of isothermal equilibrium, kinetics and thermodynamics of adsorptive desulfurization on synthesized CuIYIIIY zeolite[J]. China Pet Process Petrochem Technol, 2018, 20(2):24-33.
    [14] SONG H, WAN X, DAI M, ZHANG J J, LI F, SONG H L. Deep desulfurization of model gasoline by selective adsorption over Cu-Ce bimetal ion-exchanged Y zeolite[J]. Fuel Process Technol, 2013, 116:52-62. doi: 10.1016/j.fuproc.2013.04.017
    [15] YANG Q Y, LIU D H, ZHONG C L, LI J R. Development of computational methodologies for metal-organic frameworks and their application in gas separations[J]. Chem Rev, 2013, 113(10):8261-8323. doi: 10.1021/cr400005f
    [16] DECOSTE J B, PETERSON G W. Metal-organic frameworks for air purification of toxic chemicals[J]. Chem Rev, 2014, 114(11):5695-5727. doi: 10.1021/cr4006473
    [17] KHAN N A, HASAN Z, JHUNG S H. Ionic liquids supported on metal-organic frameworks:Remarkable adsorbents for adsorptive desulfurization[J]. Chem Eur J, 2014, 20:376-380. doi: 10.1002/chem.201304291
    [18] KHAN NA, KIM C M, JHUNG S H. Adsorptive desulfurization using Cu-Ce/metal-organic framework:Improved performance based on synergy between Cu and Ce[J]. Chem Eng J, 2016, 311:20-27.
    [19] RAJATI H, NAVARCHIAN A H, TANGESTANINEJAD S. Preparation and characterization of mixed matrix membranes based on Matrimid/PVDF blend and MIL-101(Cr) as filler for CO2/CH4 separation[J]. Chem Eng J, 2018, 185(44):92-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=80c4d1e35eb5f9fab4ceb85e85ac3cc6
    [20] ZALOMAEVA O V, KOVALENKO K A, CHESALOV Y A, MEL'GUNOV M S, ZAIKOVSKII V I, KAICHEV V V, SOROKIN A B, KHOLDEEVA O A, FEDIN V P. Iron tetrasulfophthalocyanine immobilized on metal organic framework MIL-101:Synthesis, characterization and catalytic properties[J]. Dalton Trans, 2011, 40(7):1441. doi: 10.1039/c0dt01474e
    [21] 刘菲, 赵彦亮, 李鹏, 梁淑君, 王勇智.金属有机骨架化合物MIL-101负载纳米Ni的制备及储氢性能[J].复合材料学报, 2018, 35(11):3205-3211. http://d.old.wanfangdata.com.cn/Periodical/fhclxb201811035

    LIU Fei, ZHAO Yan-liang, LI Peng, LIANG Shu-jun and WANG Zhi-yong. Preparation and hydrogen storage properties of metal organic frameworks MIL-101 loaded with nano Ni[J]. Acta Mater Compositae Sin, 2018, 35(11):3205-3211. http://d.old.wanfangdata.com.cn/Periodical/fhclxb201811035
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  73
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-22
  • 修回日期:  2020-01-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回