留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn含量对CeO2-ZrO2-MnOx催化剂甲苯氧化净化性能的影响

李安明 卫广程 郝乔慧 赵宾 张秋林

李安明, 卫广程, 郝乔慧, 赵宾, 张秋林. Mn含量对CeO2-ZrO2-MnOx催化剂甲苯氧化净化性能的影响[J]. 燃料化学学报(中英文), 2020, 48(2): 231-239.
引用本文: 李安明, 卫广程, 郝乔慧, 赵宾, 张秋林. Mn含量对CeO2-ZrO2-MnOx催化剂甲苯氧化净化性能的影响[J]. 燃料化学学报(中英文), 2020, 48(2): 231-239.
LI An-ming, WEI Guang-cheng, HAO Qiao-hui, ZHAO Bin, ZHANG Qiu-lin. Effect of Mn content on the catalytic performance of CeO2-ZrO2-MnOx in the oxidation of toluene[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 231-239.
Citation: LI An-ming, WEI Guang-cheng, HAO Qiao-hui, ZHAO Bin, ZHANG Qiu-lin. Effect of Mn content on the catalytic performance of CeO2-ZrO2-MnOx in the oxidation of toluene[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 231-239.

Mn含量对CeO2-ZrO2-MnOx催化剂甲苯氧化净化性能的影响

基金项目: 

国家重点研发计划项目 2018YFC0213400

详细信息
  • 中图分类号: X701.7

Effect of Mn content on the catalytic performance of CeO2-ZrO2-MnOx in the oxidation of toluene

Funds: 

the National Key R & D Program of China 2018YFC0213400

More Information
  • 摘要: 采用氧化还原沉淀法制备了一系列CeO2-ZrO2-MnOx催化剂(CZMXX为Mn在催化剂总金属中的摩尔含量),探讨了Mn含量对CZMX催化甲苯燃烧性能的影响。结果表明,CZM0.6催化剂具有最好的活性,在230℃下即可实现甲苯的完全转化。XRD表征结果发现,随着锰掺杂量的增加,CZMX催化剂结晶度先降低后增加。H2-TPR表征结果表明,随着Mn含量的增加,Ce-Zr-Mn之间的相互作用力先增强后减弱。CZM0.6结晶度最差,金属之间相互作用力最强,表面氧物种更易溢出;同时,Raman和O2-TPD表征结果也证明CZM0.6催化剂上具有较高的表面氧空位浓度,有利于催化剂表面活性氧物种的迁移,促进了甲苯的氧化。此外,通过in-situ DRIFTS对中间产物进行观测,发现苯甲酸盐是CZM0.6催化剂上甲苯氧化反应的重要中间体;在O2参与下,苯甲酸盐可迅速转化为CO2和H2O。
  • 图  1  Mn含量对CZM催化剂甲苯催化性能的影响

    Figure  1  Effect of Mn content on the catalytic performance of CZMX in toluene oxidation

    图  2  不同催化剂的N2吸附-脱附等温线(a)及平均宽度曲线(b)

    Figure  2  N2 adsorption-desorption isotherms (a) and average width curves (b) of various CZMX catalysts

    图  3  不同催化剂的XRD谱图

    Figure  3  XRD patterns of various CZMX catalysts

    图  4  不同催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of various CZMX catalysts

    图  5  不同催化剂的Raman谱图

    Figure  5  Raman spectra of various CZMX catalysts

    图  6  不同催化剂的O2-TPD谱图

    Figure  6  O2-TPD profiles of various CZMX catalysts

    图  7  不同催化剂上甲苯吸附(a)和纯N2吹扫(b)及CZM0.6共吸附(c)的DRIFTS光谱谱图

    Figure  7  DRIFTS spectra of toluene adsorption on different catalysts (a) and pure N2 purge on different catalysts (b) and O2 and toluene co-adsorption on CZM0.6 (c)

    图  8  CZM0.6不同空速测试(a)和稳定性测试(b)

    Figure  8  Toluene oxidation over CZM0.6 under different space velocity (a) and stability test of CZM0.6 at 280 ℃ (b)

    表  1  不同催化剂的孔结构参数

    Table  1  Pore structure parameters of various CZMX catalysts

    Sample ABET/(m2·g-1) Average pore size d/nm
    CZM0.8 139.2 5.4
    CZM0.6 122.9 5.4
    CZM0.4 126.1 4.9
    CZM0.2 156.8 4.1
    下载: 导出CSV
  • [1] 赵恒, 张学军, 宋忠贤, 马子昂, 赵敏, 赵井岗.挥发性有机物治理技术研究进展[J].石油化工, 2019, 48(3):318-325. http://d.old.wanfangdata.com.cn/Periodical/syhg201903016

    ZHAO Heng, ZHANG Xue-jun, SONG Zhong-xian, MA Zi-ang, ZHAO Min, ZHAO Jin-gang. Advances in elimination of volatile organic compounds[J]. Petrochem Technol, 2019, 48(3):318-325. http://d.old.wanfangdata.com.cn/Periodical/syhg201903016
    [2] 雷娟, 王爽, 李晋平.甲苯催化氧化催化剂的研究进展[J].太原理工大学学报, 2019, 50(4):430-436. http://d.old.wanfangdata.com.cn/Periodical/tylgdxxb201904005

    LEI Juan, WANG Shuang, LI Jin-ping. Research progress of catalytic oxidation catalysts for toluene[J]. J Taiyuan Univ Technol, 2019, 50(4):430-436. http://d.old.wanfangdata.com.cn/Periodical/tylgdxxb201904005
    [3] 李永强, 张晓武, 祖普全.贵金属催化剂用于VOCs催化燃烧的研究进展[J].广东化工, 2015, 42(24):85-86. doi: 10.3969/j.issn.1007-1865.2015.24.042

    LI Yong-qiang, ZHANG Xiao-wu, ZU Pu-quan. Research progress in noble metal catalyst for catalytic combustion of volatile organic compounds[J]. Guangdong Chem Ind, 2015, 42(24):85-86. doi: 10.3969/j.issn.1007-1865.2015.24.042
    [4] 姚小江, 贡营涛, 李红丽, 杨复沫.铈基催化剂用于NH3选择性催化还原NOx的研究进展[J].物理化学学报, 2015, 31(5):817-828. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201505002

    YANG Xiao-jiang, GONG Ying-tao, LI Hong-li, YANG Fu-mo. Research progress of ceria-based catalysts in the selective catalytic reduction of NOx by NH3[J]. Acta Phys-Chim Sin, 2015, 31(5):817-828. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201505002
    [5] SEDJAME H J, FONTAINE C, LAFAYE G, JR J B. On the promoting effect of the addition of ceria to platinum based alumina catalysts for VOCs oxidation[J]. Appl Catal B:Environ, 2014, 144:233-242. doi: 10.1016/j.apcatb.2013.07.022
    [6] RAVEENDRA G, LI C M, LIU B, CHENG Y, MENG F H, LI Z. Syngas to lower olefins synthesis over Zn/Al2O3-SAPO-34 hybrid catalysts:Role of doped Zr and influence of the Zn/Al2O3 ratio[J]. Catal Sci Technol, 2018, 6(8):3527-3528.
    [7] 吴昊澜, 赵朝成, 雷洁霞.铈锆固溶体催化剂的研究进展[J].广东化工, 2014, 41(289):69-70, 79. http://d.old.wanfangdata.com.cn/Periodical/gdhg201423031

    WU Hao-lan, ZHAO Chao-cheng, LEI Jie-xia. The recent research development on ceria-zirconia solid solution catalyst[J]. Guangdong Chem Ind, 2014, 41(289):69-70, 79. http://d.old.wanfangdata.com.cn/Periodical/gdhg201423031
    [8] DENG Q F, REN T Z, BAO AGULA, LIU Y P, YUAN Z Y. Mesoporous CexZr1-xO2 solid solutions supported CuO nano-catalysts for toluene total oxidation[J]. Chem Eng J, 2014, 20(5):3303-3312. https://www.sciencedirect.com/science/article/abs/pii/S1226086X13006448
    [9] SHAH P M, DAY A N, DAVIES T E, DAVIES J M, TAYLOR S H. Mechanochemical preparation of ceria-zirconia catalysts for the total oxidation of propane and naphthalene volatile organic compounds[J]. Appl Catal B:Environ, 2019, 253:331-340. doi: 10.1016/j.apcatb.2019.04.061
    [10] ZHAO W T, ZHANG Y Y, WU X W, ZHAN Y Y, WANG X Y, AU C T, JIANG L L. Synthesis of Co-Mn oxides with double-shelled nanocages for low-temperature toluene combustion[J]. Catal Sci Technol, 2018, 8:4494-4502. doi: 10.1039/C8CY01206G
    [11] SUÁREZ-VÁQUEZ S I, GIL S, GARCÍA-VARGAS J M, CRUZ-LÓPEZ A, GIROIR-FENDLER A. Catalytic oxidation of toluene by SrTi1-xBxO3, (B=Cu and Mn) with dendritic morphology synthesized by one pot hydrothermal route[J]. Appl Catal B:Environ, 2018, 223(8):201-208.
    [12] ZHOU Z J, LIU X W, LIAO Z Q, SHAO H Z, LÜ C, HU Y C, XU M H. Manganese doped CeO2-ZrO2 catalyst for elemental mercury oxidation at low temperature[J]. Fuel Process Technol, 2016, 152:285-293. doi: 10.1016/j.fuproc.2016.06.016
    [13] 张晓鹏, 沈伯雄. Mn/Ce-ZrO2催化剂低温NH3-SCR脱硝性能研究[J].燃料化学学报, 2013, 41(1):123-128. doi: 10.3969/j.issn.0253-2409.2013.01.020

    ZHANG Xiao-peng, SHEN Bo-xiong. Selective catalytic reduction of NO with NH3 over Mn-based catalysts at low temperature[J]. J Fuel Chem Technol, 2013, 41(1):123-128. doi: 10.3969/j.issn.0253-2409.2013.01.020
    [14] SANTOS V P, PEREIRA M F R, ÓRFAO J J M, FIGUEIREDO J L. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds[J]. Appl Catal B:Environ, 2010, 99(1/2):353-363. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=57d1e827a80a1170572e3352c67ee07b
    [15] 张鼎盛, 潘华, 毛益萍, 杨仲余, 王晟康, 施耀. CeO2负载过渡金属催化氧化甲苯[J].环境污染与防治, 2019, 41(9):1050-1055. http://d.old.wanfangdata.com.cn/Periodical/hjwryfz201909010

    ZHANG Ding-sheng, PAN Hua, MAO Yi-ping, YANG Zhong-yu, WANG Sheng-kang, SHI Yao. Catalytic behavior of toluene oxidation on CeO2 supported transition metal catalysts[J]. Environ Pollut Control, 2019, 41(9):1050-1055. http://d.old.wanfangdata.com.cn/Periodical/hjwryfz201909010
    [16] 魏亮, 秦瑞香, 王单, 王丹, 王金波, 陈华.铜锰复合氧化物催化甲苯完全氧化反应研究[J].化学研究与应用, 2018, 30(6):912-918. doi: 10.3969/j.issn.1004-1656.2018.06.008

    WEI Liang, QIN Rui-xiang, WANG Dan, WANG Dan, WANG Jin-bo, CHEN Hua. Highly selective catalytic oxidation of toluene over copper-manganese complex oxide[J]. Chem Res Appl, 2018, 30(6):912-918. doi: 10.3969/j.issn.1004-1656.2018.06.008
    [17] 李锦卫, 朱佳.负载型CuMnOx/TiO2催化剂催化燃烧甲苯[J].工业催化, 2015, 23(12):1002-1007. doi: 10.3969/j.issn.1008-1143.2015.12.009

    LI Jin-wei, ZHU Jia. Catalytic combustion of toluene over supported CuMnOx/TiO2 catalysts[J]. Ind Catal, 2015, 23(12):1002-1007. doi: 10.3969/j.issn.1008-1143.2015.12.009
    [18] 王永强, 肖丽, 孙启猛, 赵朝成, 李石. Pd/La0.8Ce0.2MnO3/ZSM-5的制备及其甲苯催化燃烧活性[J].燃料化学学报, 2014, 42(9):1146-1152. doi: 10.3969/j.issn.0253-2409.2014.09.017

    WANG Yong-qiang, XIAO Li, SUN Qi-meng, ZHANG Chao-cheng, LI Shi. Preparation of the Pd/La0.8Ce0.2MnO3/ZSM-5 catalyst and its performance in catalytic combustion of toluene[J]. J Fuel Chem Technol, 2014, 42(9):1146-1152. doi: 10.3969/j.issn.0253-2409.2014.09.017
    [19] QIN Y, QU Z P, DONG C, WANG Y, HUANG N. catalytic activity of Mn/SBA-15 catalysts for toluene combustion improved by adjusting the morphology of supports[J]. J Environ Sci, 2019, 76(02):208-216. http://www.sciencedirect.com/science/article/pii/S1001074218306168
    [20] 顾欧昀, 廖永涛, 陈锐杰, 贾璐, 龟山秀雄, 林益, 周吕, 马华, 郭燏.铜锰复合氧化物催化剂上甲苯的催化燃烧[J].化工学报, 2016, 67(7):2832-2840. http://d.old.wanfangdata.com.cn/Periodical/hgxb201607025

    GU Ou-jun, LIAO Yong-tao, CHEN Rui-jie, JIA Lu, GUI SHAN xiu xiong, LIN Yi, ZHOU Lü, MA Hua, GUO Jun. Catalytic combust ion of toluene over Cu-Mn mixed oxide catalyst[J]. J Chem Ind Eng, 2016, 67(7):2832-2840. http://d.old.wanfangdata.com.cn/Periodical/hgxb201607025
    [21] WANG Y, YANG D Y, LI S Z, ZHANG L X, ZHENG G Y, GUO L M. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation[J]. Chem Eng J, 2019, 357:258-268. doi: 10.1016/j.cej.2018.09.156
    [22] 王继封, 王慧敏, 张亚青, 张秋林, 宁平. WO3的引入对MnOx-Fe2O3催化剂上NH3-SCR反应中N2选择性的促进作用[J].燃料化学学报, 2019, 47(7):814-822. doi: 10.3969/j.issn.0253-2409.2019.07.006

    WANG Ji-feng, WANG Hui-min, ZHANG Ya-qin, ZHANG Qiu-lin, NING Ping. Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR[J]. J Fuel Chem Technol, 2019, 47(7):814-822. doi: 10.3969/j.issn.0253-2409.2019.07.006
    [23] LIU C, WANG W H, XU Y, LI Z H, WANG B W, MA X B. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2, catalyst[J]. Appl Sur Sci, 2018, 441:82-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=22029ba382b6752a287873cce6c951eb
    [24] HOSSAIN S T, AZEEVA E, ZHANG K F, T. ZELL E T, BERNARD D T, BALAZ S, WANG R G. A comparative study of CO oxidation over Cu-O-Ce solid solutions and CuO/CeO2 nanorods catalysts[J]. Appl Sur Sci, 2018, 455:132-143. doi: 10.1016/j.apsusc.2018.05.101
    [25] REDDY C V, REDDY I N, AKKINEPALLY B, HARISH V V N, REDDY K R, JAESOOL S. Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation[J]. Ceram Int, 2019, 45:15298-15306. doi: 10.1016/j.ceramint.2019.05.020
    [26] CHEN J, CHEN X, XU W J, XU Z, CHEN J Z, JIA H P, CHEN J. Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene[J]. Chem Eng J, 2019, 330:281-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41ed506eb8bfdd852f3e65fd55ab08e7
    [27] QIAN K, QIAN Z X, HUA Q, JIANG Z Q, HUANG W X. Structure-activity relationship of CuO/MnO2 catalysts in CO oxidation[J]. Appl Sur Sci, 2013, 273:357-363. doi: 10.1016/j.apsusc.2013.02.043
    [28] GONG P J, XIE J L, FANG D, HAN D, HE F, LI F X, QI K. Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures[J]. Chin J Catal, 2017, 38(11):1925-1934. doi: 10.1016/S1872-2067(17)62922-X
    [29] ZHAO B H, RAN R, WU X D, WENG D. Phase structures, morphologies, and NO catalytic oxidation activities of single-phase MnO2 catalysts[J]. Appl Catal A:Gen, 2016, 514:24-34. doi: 10.1016/j.apcata.2016.01.005
    [30] DU J P, QU Z P, DONG C, SONG L X, QIN Y, HUANG N. Low temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach[J]. Appl Sur Sci, 2018, 433:1025-1035. doi: 10.1016/j.apsusc.2017.10.116
    [31] ZHANG P F, LU H F, ZHOU Y, ZHANG L, WU Z L, YANG S Z, SHI H L, ZHU Q L, CHEN Y F, DAI S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons[J]. Nat Commun, 2015, 6:8446. doi: 10.1038/ncomms9446
    [32] PAN H, JIAN Y F, CHEN C W, HE C, HAO Z P, SHEN Z X, LIU H X. Sphere-shaped Mn3O4 catalyst with remarkable low-temperature activity for methyl-ethyl-ketone combustion[J]. Environ Sci Technol, 2017, 51(11):6288-6297. doi: 10.1021/acs.est.7b00136
    [33] GU Y F, CAI T, GAO X H, XIA H Q, SUN W, ZHAO J, DAI Q G, WANG X Y. Catalytic combustion of chlorinated aromatics over WOx/CeO2 catalysts at low temperature[J]. Appl Catal B:Environ, 2019, 248(7):264-276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6e2e1a93e0666a8de231a3c94a2ddc7
    [34] ZHUO G L, LAN H, WANG H, XIE H M, ZHANG G Z, ZHENG X X. Catalytic combustion of PVOCs on MnOx catalysts[J]. J Mol Catal A:Chem, 2014, 393(11):279-228. https://www.sciencedirect.com/science/article/abs/pii/S1381116914002799
    [35] WENG X Y, SHI B Q, LIU A N, SUN J Y, XIONG Y, WAN H Q, ZHENG S R, DONG L, CHEN Y W. Highly dispersed Pd/modified-Al2O3 catalyst on complete oxidation of toluene:Role of basic sites and mechanism insight[J]. Appl Sur Sci, 2019, 497:434-456.
    [36] HAN Z, LIU Y X, DENG J G, XIE S H, ZHAO X T, YANG J, ZHANG K F, DAI H X. Preparation and high catalytic performance of Co3O4-MnO2 for the combustion of o-xylene[J]. Catal Today, 2019, 327:246-253. doi: 10.1016/j.cattod.2018.04.042
    [37] YAO P, HE J S, JIANG X, JIAO J, WANG J L, CHEN Y Q. Factors determining gasoline soot abatement over CeO2-ZrO2-MnOx catalysts under low oxygen concentration condition[J]. J Energy Inst, 2020, 93(2):774-783.
    [38] CHEN J, CHEN X, XU W J, XU Z, CHEN J Z, JIA H P, CHEN J. Ydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene[J]. Chem Eng J, 2019, 330:281-293. https://www.sciencedirect.com/science/article/pii/S1385894717312949
    [39] WANG Y N, MA W H, WANG D Y, ZHONG Q. Study on the reaction mechanism of the propylene oxide rearrangement via in situ DRIFTS[J]. Chem Eng J, 2017, 307:1047-1054. doi: 10.1016/j.cej.2016.09.035
    [40] SUN H, LIU Z G, CHEN S, QUAN X. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene[J]. Chem Eng J, 2015, 270(7):58-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=de67197163937ee320e883951d550b60
    [41] BESSELMANN S, LOFFLER E, MUHLER. On the role of monomeric vanadyl species in toluene adsorption and oxidation on V2O5/TiO2 catalysts:A Raman and in situ DRIFTS study[J]. J Mol Catal A:Chem, 2000, 162:401-411. doi: 10.1016/S1381-1169(00)00307-1
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  48
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 修回日期:  2020-01-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回