留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pt (111)面和Pt14团簇上肉桂醛吸附及选择性加氢机理研究

罗伟 薛继龙 孟跃 钱梦丹 方镭 夏盛杰 倪哲明

罗伟, 薛继龙, 孟跃, 钱梦丹, 方镭, 夏盛杰, 倪哲明. Pt (111)面和Pt14团簇上肉桂醛吸附及选择性加氢机理研究[J]. 燃料化学学报(中英文), 2018, 46(7): 818-825.
引用本文: 罗伟, 薛继龙, 孟跃, 钱梦丹, 方镭, 夏盛杰, 倪哲明. Pt (111)面和Pt14团簇上肉桂醛吸附及选择性加氢机理研究[J]. 燃料化学学报(中英文), 2018, 46(7): 818-825.
LUO Wei, XUE Ji-long, MENG Yue, QIAN Meng-dan, FANG Lei, XIA Sheng-jie, NI Zhe-ming. Adsorption and selective hydrogenation mechanism of cinnamaldehyde on Pt(111) surface and Pt14 cluster[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 818-825.
Citation: LUO Wei, XUE Ji-long, MENG Yue, QIAN Meng-dan, FANG Lei, XIA Sheng-jie, NI Zhe-ming. Adsorption and selective hydrogenation mechanism of cinnamaldehyde on Pt(111) surface and Pt14 cluster[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 818-825.

Pt (111)面和Pt14团簇上肉桂醛吸附及选择性加氢机理研究

基金项目: 

国家自然科学基金 21503188

浙江省自然科学基金 LQ15B030002

详细信息
  • 中图分类号: O641

Adsorption and selective hydrogenation mechanism of cinnamaldehyde on Pt(111) surface and Pt14 cluster

Funds: 

the National Natural Science Foundation of China 21503188

the Zhejiang Provincial Natural Science Foundation of China LQ15B030002

More Information
  • 摘要: 利用密度泛函理论研究了Pt(111)面及Pt14团簇对肉桂醛(CAL)的吸附作用和不完全加氢的反应机理。分析吸附能结果表明,肉桂醛分子以C=O与C=C键协同吸附在Pt(111)面上的六角密积(Hcp)位最稳定,以C=C键吸附在Pt14团簇上最稳定,且在Pt14团簇上的吸附作用较Pt(111)面更强。由过渡态搜索并计算得到的反应能垒及反应热可知,肉桂醛在Pt(111)面和Pt14团簇上均较容易对C=O键加氢得到肉桂醇(COL)。其中,优先加氢O原子为最佳反应路径,即Pt无论是平板还是团簇对肉桂醛加氢均有较好的选择性。同时发现,肉桂醛分子在Pt(111)面的加氢反应能垒较Pt14团簇上更低,即Pt的催化活性及对肉桂醛加氢产物选择性与其结构密切相关,其中,Pt(111)面对生成肉桂醇更加有利。
  • 图  1  (a): Pt(111)面模型;(b): Pt14团簇模型;(c):肉桂醛分子模型

    Figure  1  (a): Pt(111) surface model; (b): Pt14 cluster model; (c): CAL molecular model

    图  2  肉桂醛在Pt(111)面和Pt14团簇上稳定吸附构型

    Figure  2  Stable adsorption configuration of CAL on Pt(111) surface and Pt14 cluster

    图  3  CAL与Pt(111)面和Pt14团簇吸附的态密度图

    Figure  3  Partial densities of states (PDOS) and total densities of states (TDOS) of CAL adsorption on Pt(111) and Pt14

    图  4  CAL吸附前后p轨道的分波态密度

    Figure  4  p Oribital partial density of states of CAL before and after adsorption

    图  5  CAL的不完全加氢机理图

    Figure  5  Mechanism for the selective hydrogenation of CAL

    图  6  各机理在Pt(111)和Pt14上的能量变化

    Figure  6  Diagram for relative energy of reaction mechanisms on Pt(111) and Pt14

    表  1  肉桂醛在Pt(111)面上不同吸附构型的吸附能

    Table  1  Adsorption energy (Eads) of CAL molecule on Pt(111) surface

    Adsorption mode Adsorption site Eads/(kJ·mol-1) Adsorption mode Adsorption site Eads /(kJ·mol-1)
    O Bri 92.02 C=O and C=C Bri-Bri 89.21
    Fcc 91.49 Bri-Fcc 92.04
    Hcp 91.39 Bri-Hcp 81.58
    Top 91.62 Bri-Top 91.14
    Fcc-Bri 89.40
    C=C Bri 92.01 Fcc-Fcc 91.95
    Fcc 90.42 Fcc-Hcp 91.18
    Hcp 91.39 Fcc-Top 91.91
    Top 91.92 Hcp-Bri 88.36
    Hcp-Fcc 91.56
    C=O Bri 74.08 Hcp-Hcp 92.42
    Fcc 72.52 Hcp-Top 92.09
    Hcp 67.65 Top-Bri 91.08
    Top 91.16 Top-Fcc 90.71
    Top-Hcp 90.86
    Top-Top 90.84
    下载: 导出CSV

    表  2  Pt(111)和Pt14上CAL的Mulliken电荷布居数

    Table  2  Mulliken charge populations of CAL molecule at advantage adsorption site on Pt(111) and Pt14

    Atom Charge/e
    free CAL CAL-Pt(111) CAL-Pt14
    O1 -0.384 -0.355 -0.336
    C2 0.274 0.223 0.256
    C3 -0.085 -0.117 -0.089
    C4 0.019 -0.028 -0.037
    C5 0.086 0.038 0.085
    C6 -0.042 -0.069 -0.073
    C7 -0.030 -0.075 -0.073
    C8 -0.028 -0.073 -0.084
    C9 -0.028 -0.073 -0.071
    C10 -0.063 -0.083 -0.094
    H11 -0.011 0.031 0.072
    H12 0.045 0.098 0.132
    H13 0.041 0.097 0.132
    H14 0.037 0.096 0.087
    H15 0.041 0.105 0.092
    H16 0.042 0.108 0.090
    H17 0.042 0.106 0.092
    H18 0.044 0.099 0.088
    Tol 0.000 0.128 0.269
    下载: 导出CSV

    表  3  Pt(111)和Pt14上各基元反应的活化能和反应热

    Table  3  Activation energy(Ea) and reaction energy(ΔE) of primitive reactions on Pt(111) and Pt14

    Mechanism Reaction step CAL-Pt(111) CAL-Pt14
    Ea /(kJ·mol-1) ΔE /(kJ·mol-1) Ea /(kJ·mol-1) ΔE /(kJ·mol-1)
    R12 r1 21.27 -43.04 86.63 33.83
    r12 65.02 -12.70 53.29 23.66
    R21 r2 136.75 71.60 228.91 102.78
    r21 244.47 -127.67 92.99 -40.73
    R34 r3 107.04 4.48 142.49 52.21
    r34 129.80 -87.43 120.45 -62.27
    R43 r4 224.32 -1.37 148.53 29.88
    r43 24.28 -84.56 94.44 -37.25
    R14 r1 21.27 -43.04 86.63 33.83
    r14 228.88 -7.52 67.62 32.74
    R41 r4 224.32 -1.37 148.53 29.88
    r41 243.82 -43.38 88.45 42.42
    下载: 导出CSV
  • [1] 高爽, 陈晓陆, 汪建江, 杜国丰, 李振, 王振旅. Ru基催化剂在肉桂醛选择性加氢反应中的研究[J].石油化工, 2017, 46(7):862-868. http://www.whxb.pku.edu.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=29122

    GAO Shuang, CHEN Xiao-lu, WANG Jian-jiang, DU Guo-feng, LI Zhen, WANG Zhen-lü. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on Ru-based catalysts[J]. Petrochem Technol, 2017, 46(7):862-868. http://www.whxb.pku.edu.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=29122
    [2] CLAUS P, BRULCKNER A, MOHR C, HOFMEISTER H. Supported gold nanoparticles from quantum dot to mesoscopic size scale:Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups[J]. J Am Chem Soc, 2000, 122(46):11430-11439. doi: 10.1021/ja0012974
    [3] BUS E, PRINS R, BOKHOVEN J A V. Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts[J]. Catal Commun, 2007, 8(9):1397-1402 doi: 10.1016/j.catcom.2006.11.040
    [4] HISCHL R, DELBECQ F, SAUTET P, HAFNER J. Adsorption of unsaturated aldehydes on the (111) surface of a Pt-Fe alloy catalyst from first principles[J]. J Catal, 2003, 217(2):354-366. doi: 10.1016/S0021-9517(03)00057-5
    [5] 李辉, 马春景, 李和兴. Ni-Co-B非晶态合金催化肉桂醛常压加氢制3-苯丙醛的研究[J].化学学报, 2006, 64(19):1947-1953. doi: 10.3321/j.issn:0567-7351.2006.19.002

    LI Hui, MA Chun-jing, LI He-xing. Study on cinnamaldehyde hydrogenation to 3-phenylpropyl aldehyde at atmospheric pressure over Ni-Co-B amorphous alloys[J]. Acta Chim Sin, 2006, 64(19):1947-1953. doi: 10.3321/j.issn:0567-7351.2006.19.002
    [6] Ni X J, ZHANG B S, LI C, PANG M, SU D S, WILLIAMS C T, LIANG C H. Microwave-assisted green synthesis of uniform Ru nanoparticles supported on non-functional carbon nanotubes for cinnamaldehyde hydrogenation[J]. Catal Commun, 2012, 24(24):65-69. http://cn.bing.com/academic/profile?id=db3029e7784109e921a1ccf0f5ea7ba9&encoded=0&v=paper_preview&mkt=zh-cn
    [7] MARCHI A J, GORDO D A, TRASARTI A F, APESTEGUIA C R. Liquid phase hydrogenation of cinnamaldehyde on Cu-based catalysts[J]. Appl Catal A:Gen, 2003, 249(1):53-67. doi: 10.1016/S0926-860X(03)00199-6
    [8] JOSEPH ANTONY RAJ A, PRAKASH M G, ELANGOVAN T, VISWANATHAN B. Selective hydrogenation of cinnamaldehyde over cobalt supported on alumina, silica and titania[J]. Catal Lett, 2012, 142(1):87-94. doi: 10.1007/s10562-011-0693-0
    [9] LUO Q Q, WANG T, BELLER R, JIAO H J. Acrolein hydrogenation on Ni(111)[J]. J Phys Chem C, 2013, 117(24):12715-12724. doi: 10.1021/jp403972b
    [10] 钱梦丹, 薛继龙, 夏盛杰, 倪哲明, 蒋军辉, 曹勇勇. Pd/Cu(111)双金属表面催化糠醛脱碳及加氢的反应机理[J].燃料化学学报, 2017, 45(1):34-42. http://www.ccspublishing.org.cn/article/id/180e59be-1252-4094-8e4f-479caf47d7d4

    QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, JIANG Jun-hui, CAO Yong-yong. Decarbonylation and hydrogenation reaction of furfural on Pd/Cu(111) surface[J]. J Fuel Chem Technol, 2017, 45(1):34-42. http://www.ccspublishing.org.cn/article/id/180e59be-1252-4094-8e4f-479caf47d7d4
    [11] YUAN E, WANG L, ZHANG X W, FENG R, WU C, LI G Z. Density functional theory analysis of anthraquinone derivative hydrogenation over palladium catalyst[J]. Chem Phys Chem, 2016, 17(23):3974-3984. doi: 10.1002/cphc.201600874
    [12] ROJAS H, DIAZ G, MARTINE J J, CASTANEDA C, GOMEZ-CORTES A, ARENAS-ALATORRE J. Hydrogenation of α, β-unsaturated carbonyl compounds over Au and Ir supported on SiO2[J]. J Mol Catal A:Chem, 2012, 363(364):122-128. https://www.sciencedirect.com/science/article/pii/S1381116912001823
    [13] IDE M S, HAO B, NEUROCK M, DAVIS R J. Mechanistic insights on the hydrogenation of α, β-unsaturated ketones and aldehydes to unsaturated alcohols over metal catalysts[J]. ACS Catal, 2012, 2(4):671-683. doi: 10.1021/cs200567z
    [14] ZANELLA R, LOUIS C, GIORGIO S, TOUROUDE R. Crotonaldehyde hydrogenation by gold supported on TiO2:Structure sensitivity and mechanism[J]. J Catal, 2004, 223(2):328-339. doi: 10.1016/j.jcat.2004.01.033
    [15] LOFFREDA D, DELLECQ F, VIGNE F, SAUTET P. Catalytic hydrogenation of unsaturated aldehydes on Pt(111):Understanding the selectivity from first-principles calculations[J]. Angew Chem Int Ed, 2005, 44(33):5279-5282. doi: 10.1002/(ISSN)1521-3773
    [16] HAN Q, LIU Y F, WANG D, YUAN F L, NIU X Y, ZHU Y J. Effect of carbon nanosheets with different graphitization degree as support of noble metal on selective hydrogenation of cinnamaldehyde[J]. Rsc Adv, 2016, 6(100):98356-98364. doi: 10.1039/C6RA17979G
    [17] ABID M, PAUL-BONCOR V, TOUROUDE R. Pt/CeO2 catalysts in crotonaldehyde hydrogenation:Selectivity, metal particle size and SMSI states[J].Appl Catal A:Gen, 2006, 297(1):48-59. doi: 10.1016/j.apcata.2005.08.048
    [18] MAHATA N, GONCALVE F, PEREIRA M F R, FIGUEIREDO J L. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst[J]. Appl Catal A:Gen, 2008, 339(2):159-168. doi: 10.1016/j.apcata.2008.01.023
    [19] TEDDY J, FALQUI A, CORRIAS A, CARTA D, LECANTE P, GERBER I, SERP P. Influence of particles alloying on the performances of Pt-Ru/CNT catalysts for selective hydrogenation[J]. J Catal, 2011, 278(1):59-70. doi: 10.1016/j.jcat.2010.11.016
    [20] JOB N, PIRARD R, MARIEN J, PIRARD J P. Porous carbon xerogels with texture tailored by pH control during sol-gel process[J]. Carbon, 2004, 42(3):619-628. doi: 10.1016/j.carbon.2003.12.072
    [21] DURNDELL L J, PARLETT C M, HONDOW N S, ISAACS M A, WILSON K, LEE A F. Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation[J]. Sci Rep, 2015, 5:9425. doi: 10.1038/srep09425
    [22] TUOKKO S, PIHKO P M, HONKALA K. First principles calculations for hydrogenation of acrolein on Pd and Pt:Chemoselectivity depends on steric effects on the surface[J]. Angew Chem Int Ed, 2016, 55(5):1670-1674. doi: 10.1002/anie.201507631
    [23] CAO X M, BURCH R, HARDCRE C, HU P. Reaction mechanisms of crotonaldehyde hydrogenation on Pt(111):Density functional theory and microkinetic modeling[J]. J Phys Chem C, 2011, 115(40):19819-19827. doi: 10.1021/jp206520w
    [24] YANG X, WANG A, WANG X, ZHANG T, HAN K, LI J. Combined experimental and theoretical investigation on the selectivities of Ag, Au, and Pt catalysts for hydrogenation of crotonaldehyde[J]. J Phys Chem C, 2009, 113(49):97-102. http://cn.bing.com/academic/profile?id=7dd28611e01fece5ddd36f7c71d8e047&encoded=0&v=paper_preview&mkt=zh-cn
    [25] LI L C, WANG W, WANG X L, ZHSNG L. Investigating the mechanism of the selective hydrogenation reaction of cinnamaldehyde catalyzed by Ptn clusters[J]. J Mol Model, 2016, 22(8):1-11. http://cn.bing.com/academic/profile?id=eddbbe0a41030118142d3cd6c1f53e7c&encoded=0&v=paper_preview&mkt=zh-cn
    [26] JIANG Z, QIN P, FANG T. Theoretical study of NH3 decomposition on Pd-Cu(111) and Cu-Pd (111) surfaces:A comparison with clean Pd(111) and Cu(111)[J]. Appl Surf Sci, 2016, 371:337-342. doi: 10.1016/j.apsusc.2016.02.231
    [27] GOVIND N, PETERSEN M, FITZGERAID G, KING-SMITH D, ANDZELM J. A generalized synchronous transit method for transition state location[J]. Comput Mater Sci, 2003, 28(2):250-258. http://cn.bing.com/academic/profile?id=a5fdb4a1f1364334c36630ca4dbbf11e&encoded=0&v=paper_preview&mkt=zh-cn
    [28] 肖雪春, 施炜, 倪哲明. Au(111)面上肉桂醛的选择性加氢机理[J].物理化学学报, 2014, 30(8):1456-1464. doi: 10.3866/PKU.WHXB201406091

    XIAO Xue-chun, SHI Wi, NI Zhe-ming. Selective hydrogenation mechanism of cinnamaldehyde on Au(111) surface[J]. Acta Phys-Chim Sin, 2014, 30(8):1456-1464. doi: 10.3866/PKU.WHXB201406091
    [29] 蒋军辉, 钱梦丹, 薛继龙, 夏盛杰, 倪哲明, 邵蒙蒙. In-Au(111)和Ir-Au(111)合金表面的性质及其对巴豆醛的吸附比较[J].物理化学学报, 2016, 32(12):2932-2940. doi: 10.3866/PKU.WHXB201609302

    JIANG Jun-hui, QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, SHAO Meng-meng. Comparison of properties of In-Au(111) and Ir-Au(111) alloy surfaces, and their adsorption to crotonaldehyde[J]. Acta Phys-Chim Sin, 2016, 32(12):2932-2940. doi: 10.3866/PKU.WHXB201609302
    [30] YANG X F, WANG A Q, WANG X D, ZHANG T, HAN K L, LI J. Combined experimental and theoretical investigation on the selectivities of Ag, Au, and Pt catalysts for hydrogenation of crotonaldehyde[J]. J Phys Chem C, 2009, 113(49):20918-20926. doi: 10.1021/jp905687g
    [31] PIRILLO S, LOPEZ-CORRAL I, GERMAN E, JUAN A. Density functional study of acrolein adsorption on Pt (111)[J]. Vacuum, 2014, 99(1):259-264. http://cn.bing.com/academic/profile?id=72bd162da6be599da890768026ef645d&encoded=0&v=paper_preview&mkt=zh-cn
    [32] LIU R Q. Adsorption and dissociation of H2O on Au(111) surface:A DFT study[J]. Comput Theor Chem, 2013, 1019(1):141-145. https://www.researchgate.net/publication/270919912_Adsorption_and_dissociation_of_H2O_on_Au111_surface_A_DFT_study
    [33] WEI S P, ZHAO Y T, FAN G L, YANG L, LI F. Structure-dependent selective hydrogenation of cinnamaldehyde over high-surface-area CeO2-ZrO2 composites supported Pt nanoparticles[J]. Chem Eng J, 2017, 322(15):234-245. https://www.sciencedirect.com/science/article/pii/S1385894717305533
    [34] LIU H, MEI Q, LI S, YANG Y, WANG Y, LIU H, ZHENG L, AN P, ZHANG J, HAN B. Selective hydrogenation of unsaturated aldehydes over Pt nanoparticles promoted by the cooperation of steric and electronic effects[J]. Chem Commun, 2018, 54(8):908-911. doi: 10.1039/C7CC08942B
    [35] YANG B, CHERKASOV N, HUBAND S, WALKER D, WALTON R I, REBROV E. Highly selective continuous flow hydrogenation of cinnamaldehyde to cinnamyl alcohol in a Pt/SiO2 coated tube reactor[J]. Catalysts, 2018, 8(2):58. doi: 10.3390/catal8020058
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  36
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-12
  • 修回日期:  2018-05-24
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-07-10

目录

    /

    返回文章
    返回