留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无机酸洗脱对胜利褐煤微晶结构及其自燃倾向性的影响

班延鹏 唐艳花 王杰 韩孟欣 特古斯 王琰 何润霞 智科端 刘全生

班延鹏, 唐艳花, 王杰, 韩孟欣, 特古斯, 王琰, 何润霞, 智科端, 刘全生. 无机酸洗脱对胜利褐煤微晶结构及其自燃倾向性的影响[J]. 燃料化学学报(中英文), 2016, 44(9): 1059-1065.
引用本文: 班延鹏, 唐艳花, 王杰, 韩孟欣, 特古斯, 王琰, 何润霞, 智科端, 刘全生. 无机酸洗脱对胜利褐煤微晶结构及其自燃倾向性的影响[J]. 燃料化学学报(中英文), 2016, 44(9): 1059-1065.
BAN Yan-peng, TANG Yan-hua, WANG Jie, HAN Meng-xin, TE Gu-si, WANG Yan, HE Run-xia, ZHI Ke-duan, LIU Quan-sheng. Effect of inorganic acid elution on microcrystalline structure and spontaneous combustion tendency of Shengli lignite[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1059-1065.
Citation: BAN Yan-peng, TANG Yan-hua, WANG Jie, HAN Meng-xin, TE Gu-si, WANG Yan, HE Run-xia, ZHI Ke-duan, LIU Quan-sheng. Effect of inorganic acid elution on microcrystalline structure and spontaneous combustion tendency of Shengli lignite[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1059-1065.

无机酸洗脱对胜利褐煤微晶结构及其自燃倾向性的影响

基金项目: 

国家自然科学基金 21566029

国家自然科学基金 21566028

国家自然科学基金 21266017

内蒙古自然科学基金 2014MS0220

内蒙古自然科学基金 2015BS0206

内蒙古自然科学基金 2016BS0204

内蒙古工业大学科学研究项目 ZS201138

详细信息
    通讯作者:

    智科端, E-mail: zhikeduan@gmail.com

    刘全生, E-mail: liuqs@imut.edu.cn

  • 中图分类号: TK16

Effect of inorganic acid elution on microcrystalline structure and spontaneous combustion tendency of Shengli lignite

Funds: 

the National Natural Science Foundation of China 21566029

the National Natural Science Foundation of China 21566028

the National Natural Science Foundation of China 21266017

the Natural Science Foundation of Inner Mongolia-China 2014MS0220

the Natural Science Foundation of Inner Mongolia-China 2015BS0206

the Natural Science Foundation of Inner Mongolia-China 2016BS0204

the Science and Research Projects of IMUT-China ZS201138

  • 摘要: 利用XRD、Raman、XPS和FT-IR表征技术,研究无机酸洗脱(HCl、H2SO4、HCl-HF)处理的胜利褐煤微晶结构的变化,采用自行设计的表面吸附仪-GC联用装置,对样品进行不同温度的低温脉冲氧化实验,考察了煤样在不同温度下氧吸附量的变化规律,通过低温脉冲氧吸附规律与TG/DTG和固定床燃烧实验关联,考察了煤样的自燃倾向。结果表明,无机酸洗脱对矿物质的脱除使得煤结构的有序度增加,石墨化程度提高,无机酸洗脱煤样与原煤相比吸氧量明显下降。随着吸附温度的升高,各煤样吸氧量明显增加,且随着脱除矿物质程度的增加,吸氧量呈减小的趋势,导致自燃倾向降低。
  • 图  1  低温氧化反应实验流程示意图

    1: adsorbed gas; 2: carrier gas; 3: pressure reducing valve4: mass flow meter; 5: triple valve; 6: six-port valve; 7: temperature thermocouple; 8: adsorbor; 9: temperature controller; 10: temperature control thermocouple; 11: ice-bath; 12: cold-hydrazine; 13: purifier; 14: chromatographic; 15: thermal conductivity cell

    Figure  1  Experiment flowchart of low temperature oxidation

    图  2  煤样的XRD谱图及SR拟合示意图

    Figure  2  XRD spectra of samples and the fitting diagram of SR

    图  3  煤样的拉曼谱图及SR拟合示意图

    Figure  3  Raman spectra of samples and the fitting diagram of SR

    图  4  煤样C 1s XPS谱图及SR拟合示意图

    Figure  4  XPS C 1s spectra of coal samples and the fitting diagram of SR

    图  5  煤样的红外光谱谱图

    Figure  5  FT-IR spectra of coal samples

    图  6  煤样耗氧量随温度的变化

    Figure  6  variation tendency of coals' oxygen consumption with the increasing of temperature

    图  7  煤样的TG-DTG曲线

    (a):TG;(b):DTG

    Figure  7  TG-DTG curves of coal samples

    图  8  燃烧过程中CO2浓度与温度的关系

    Figure  8  Relation between CO2 concentration and temperature in the process of combustion

    表  1  煤样的工业分析和元素分析

    Table  1  Proximate and ultimate analysis of coal samples

    Sample Proximate analysis w/% Ultimate analysis w/%
    Mad Ad Vd FCd C H N S O*
    SR 1.52 13.92 33.37 52.71 57.59 3.58 0.89 1.81 22.21
    SC 2.14 7.53 39.77 52.70 61.42 3.34 0.86 1.74 25.10
    SS 2.60 5.35 33.26 58.79 58.16 4.21 0.87 1.78 27.03
    SFC 2.18 1.14 41.97 56.89 64.90 4.88 0.91 1.69 26.48
    *:by difference
    下载: 导出CSV

    表  2  洗脱煤样及所对应灰分中主要金属元素含量

    Table  2  Metal ion percentage in coal samples and ashes

    Coal sample Coal based/ash based w/%
    Al3+ Na+ Ca2+ Si4+ Fen+ K+ Mnn+
    SR 2.40/35.50 0.58/8.59 0.41/6.08 3.11/46.09 0.11/1.69 0.08/1.18 0.06/0.88
    SC 0.90/32.94 0.00/0.16 0.01/0.19 2.89/64.58 0.03/0.92 0.03/1.18 0.00/0.03
    SS 0.87/31.21 0.00/0.12 0.05/6.01 0.75/61.36 0.04/1.03 0.00/0.12 0.00/0.15
    SFC 0.11/41.77 0.00/1.03 0.01/2.10 0.14/53.31 0.00/1.22 0.00/0.13 0.00/0.45
    下载: 导出CSV

    表  3  煤样的微晶结构参数

    Table  3  Microcrystalline structure parameters of coal samples

    Coal
    sample
    d002 /nm La /nm Lc /nm N fa
    SR 0.366 1.220 0.754 2.062 0.519
    SC 0.357 1.471 0.773 2.162 0.531
    SS 0.354 1.816 0.802 2.263 0.547
    SFC 0.353 2.474 0.853 2.413 0.563
    下载: 导出CSV

    表  4  煤样的Raman结构参数

    Table  4  Raman structure parameters of coal samples

    Coal sample SR SC SS SFC
    ID/IG 0.921 8 0.885 5 0.857 3 0.843 4
    IS/IG 0.445 4 0.352 5 0.237 9 0.209 7
    ID/I(VR+VL+GR) 0.463 0 0.721 1 0.739 5 0.750 4
    下载: 导出CSV

    表  5  煤样的XPS C 1s拟合结果

    Table  5  XPS C 1s fitting results of coal samples

    E/eV Carbon form Content wmol/%
    SR SC SS SFC
    284.6 C-C, C-H 83.91 84.80 81.77 79.42
    286.4 C-O 10.84 8.58 9.29 10.62
    287.5 C=O 3.14 3.55 4.98 5.88
    289.0 COO- 2.11 3.07 3.96 4.08
    下载: 导出CSV

    表  6  煤样氧消耗量与氧化温度的关系

    Table  6  Relationship between O2 consumption of coals and oxidation temperature

    TEMP t/℃ O2 consumption/(×10-2 mmol·g-1)
    SR SC SS SFC
    60 0.13 0.19 0.18 0.15
    90 0.39 0.73 0.46 0.25
    110 0.53 0.86 0.64 0.46
    140 1.86 1.53 1.10 0.64
    160 8.45 3.09 3.03 2.62
    下载: 导出CSV
  • [1] 曾凡桂, 谢克昌.煤结构化学的理论体系与方法论[J].煤炭学报, 2004, 4(29): 443-447. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200404015.htm

    ZENG Fan-gui, XIE Ke-chang. Theoretical system and methodology of coal structural chemistry[J]. J China Coal Soc, 2004, 4(29): 443-447. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200404015.htm
    [2] 石婷, 邓军, 王小芳, 文振翼.煤自燃初期的反应机理研究[J].燃料化学学报, 2004, 32(6): 652-657. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16607.shtml

    SHI Ting, DENG Jun, WANG Xiao-fang, WEN Zhen-yi. Mechanism of spontaneous combustion of coal at initial stage[J]. J Fuel Chem Technol, 2004, 32(6): 652-657. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16607.shtml
    [3] GOUWS M J, GIBBON G J, WADE L, PHILLIPS H R. An adiabatic apparatus to establish the spontaneous combustion propensity of coal[J]. Min Sci Technol, 1991, 13(3): 417-422. doi: 10.1016/0167-9031(91)90890-O
    [4] 秦波涛, 王德明, 李增华, 马汉鹏.以活化能的观点研究煤炭自燃机理[J].中国安全科学学报, 2005, 15(1): 11-13. http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200501003.htm

    QIN Bo-tao, WANG De-ming, LI Zeng-hua, MA Han-peng. Study on the mechanism of coal spontaneous combustion with activated energy view[J]. China Safety Sci J, 2005, 15(1): 11-13. http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200501003.htm
    [5] TIAN L, YANG W, CHEN Z, WANG X, YAGN H, CHEN H. Sulfur behavior during coal combustion in oxy-fuel circulating fluidized bed condition by using TG-FTIR[J]. J Energy Inst, 2016, 89(2): 264-270. doi: 10.1016/j.joei.2015.01.020
    [6] MARTIN R R, MACPHEE J A, YOUNGER C. Sequential derivation and the SIMS imaging of coal[J]. Energy Source, 1989, 11(1): 1-8. doi: 10.1080/00908318908908936
    [7] 舒新前.煤炭自燃的热分析研究[J].中国煤田地质, 1994, 25(2): 25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT402.005.htm

    SHU Xin-qian. The thermogravity analysis study on the spontaneous combustion of coal[J]. Coal Geology China, 1994, 25(2): 25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT402.005.htm
    [8] 戴广龙.煤低温氧化过程中微晶结构变化规律研究[J].煤炭学报, 2011, 36(2): 322-325. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201102032.htm

    DAI Guang-long. Research on microcrystalline structure change regularity in the coal low temperature oxidation process[J]. J China Coal Soc, 2011, 36(2): 322-325. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201102032.htm
    [9] LI Y, YANGH, HU J, WANG X, CHEN H. Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification[J]. Fuel, 2014, 117(Part B): 1174-1180. https://www.researchgate.net/publication/274022208_Effect_of_catalysts_on_the_reactivity_and_structure_evolution_of_char_in_petroleum_coke_steam_gasification?_sg=9KtgfZkTvR_QRfQthbDUeZptlgspWBc1erWVlPtqA7R88An920qHsO_y-nDjtKjX5WtIOo2mYYsk_xTTif6Zaw
    [10] LI X, HAYASHI J, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12): 1700-1707. https://www.researchgate.net/publication/244067993_FT-Raman_Spectroscopic_Study_of_the_Evolution_of_Char_Structure_During_the_Prolysis_of_a_Victorian_Brown_Coal
    [11] NEMANICH R J, GLASS J T, LUCOVSKY G, SHRODER R E. Raman scattering characterization of carbon bonding in diamond and diamond like thin films[J]. J Vac Sci Technol A, 1988, 6(3): 1783-1787. doi: 10.1116/1.575297
    [12] LI X, LI C Z.Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006, 85(10/11): 1509-1507. https://www.researchgate.net/publication/244067894_Volatilisation_and_catalytic_effects_of_alkali_and_alkaline_earth_metallic_species_during_the_pyrolysis_and_gasification_of_Victorian_brown_coal_Part_VII_Raman_spectroscopic_study_on_the_changes_in_ch
    [13] LI X, LI C Z. FT-Raman spectroscopic characterisation of chars from the pyrolysis of coals of varying rank[J]. J Fuel Chem Technol, 2005, 33(4): 385-390.
    [14] SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy, 2010, 35(12): 5347-5353. doi: 10.1016/j.energy.2010.07.025
    [15] ESTRADE-SZWARCKOPF H. XPS photoemission in carbonaceous materials: A "defect" peak beside the graphitic asymmetric peak[J]. Carbon, 2004, 42(8): 1713-1721. https://www.researchgate.net/publication/239211487_XPS_photoemission_in_carbonaceous_materials_A_defect_peak_beside_the_graphitic_asymmetric_peak
    [16] WANG B, PENG Y, VINK S. Diagnosis of the surface chemistry effects on fine coal flotation using saline water[J]. Energy Fuels, 2013, 27(8): 4869-4874. doi: 10.1021/ef400909r
    [17] HU Y, LI P, HU N, HU S, DOU S, YANG G. Inorganic element functional group database on pulverized coal surface based on XPS method[J]. Data Sci J, 2007, 6: S317-S323. doi: 10.2481/dsj.6.S317
    [18] XIA W, YANG J, LIANG C. Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM[J]. Appl Surf Sci, 2014, 293: 293-298. doi: 10.1016/j.apsusc.2013.12.151
    [19] KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83(3): 259-265. doi: 10.1016/j.fuel.2003.08.004
    [20] DONG P, CHEN G, ZENG X, CHU M, GAO S, XU G. Evolution of inherent oxygen in solid fuels during pyrolysis[J]. Energy Fuels, 2015, 29(4): 2268-2276. doi: 10.1021/ef5028839
    [21] MIURA K, MAE K, LI W, KUSAKAWA T, MOROZUMI F, KUMANO A. Estimation of hydrogen bond distribution in coal through the analysis of OH stretching bands in diffuse reflectance infrared spectrum measured by in-situ technique[J]. Energy Fuels, 2001, 15(3): 599-610. doi: 10.1021/ef0001787
    [22] GENG W, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel, 2009, 88(1): 139-144. doi: 10.1016/j.fuel.2008.07.027
    [23] QI X, GUO X, XUE L, ZHENG C. Effect of iron on Shenfu coal char structure and its influence on gas ification reactivity[J]. J Anal Appl Pyrolysis, 2014, 110: 401-407. doi: 10.1016/j.jaap.2014.10.011
    [24] LU L, SAHAJWALLA V, HARRIS D. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace[J]. Energy Fuels, 2000, 14(4): 869-876. doi: 10.1021/ef990236s
    [25] HECKLEY E. The structural changes of hydrothermally treated biochar caused by ball-milling[D]. Norcester: Worcester Polytechnic Institute, 2014.
    [26] XIA W, YANG J, LIANG C. Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM[J]. Appl Surf Sci, 2014, 293: 293-298. doi: 10.1016/j.apsusc.2013.12.151
    [27] KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83(3): 259-265. doi: 10.1016/j.fuel.2003.08.004
    [28] KELEMEN S R, AFEWORKI M, GORBATY M L, COHEN A D. Characterization of organically bound oxygen forms in lignites, peats, and pyrolyzed peats by X-ray photoelectron spectroscopy (XPS) and solid-state 13C NMR methods[J]. Energy Fuels, 2002, 16(6): 1450-1462. doi: 10.1021/ef020050k
    [29] 胡艺.污泥干燥及干污泥与煤混烧官能团演化研究[D].湖北:武汉大学, 2010: 40-42.

    HU-Yi. Research on sewage sludge drying and functionality evolution during co-combustion of dry sewag sludge and coal[D]. Hubei:Wuhan University, 2010: 40-42.
    [30] 杨永良, 李增华, 尹文宣, 潘尚昆.易自然煤漫反射红外光谱特征[J].煤炭学报, 2007, 32(7): 729-733.

    YANG Yong-liang, LI Zeng-hua, YIN Wen-xuan, PAN Shang-kun. Infrared diffuse reflectance spectral signature of spontaneous combustion coal[J]. J China Coal Soc, 2007, 32(7): 729-733.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  29
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-23
  • 修回日期:  2016-01-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-09-10

目录

    /

    返回文章
    返回