留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structures and energetics of CO2 adsorption on the Fe3O4 (111) surface

YANG Tao LIU Jin-jia WANG Yan-dan WEN Xiao-dong SHEN Bao-jian

杨涛, 刘金家, 王艳丹, 温晓东, 申宝剑. CO2在Fe3O4(111)表面的吸附结构及能量研究[J]. 燃料化学学报(中英文), 2018, 46(9): 1113-1120.
引用本文: 杨涛, 刘金家, 王艳丹, 温晓东, 申宝剑. CO2在Fe3O4(111)表面的吸附结构及能量研究[J]. 燃料化学学报(中英文), 2018, 46(9): 1113-1120.
YANG Tao, LIU Jin-jia, WANG Yan-dan, WEN Xiao-dong, SHEN Bao-jian. Structures and energetics of CO2 adsorption on the Fe3O4 (111) surface[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1113-1120.
Citation: YANG Tao, LIU Jin-jia, WANG Yan-dan, WEN Xiao-dong, SHEN Bao-jian. Structures and energetics of CO2 adsorption on the Fe3O4 (111) surface[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1113-1120.

CO2在Fe3O4(111)表面的吸附结构及能量研究

基金项目: 

the National Natural Science Foundation of China 21776304

the National Natural Science Foundation of China 21473229

the National Natural Science Foundation of China 91545121

the Shanxi Province Science Foundation for Youth 201601D021048

详细信息
  • 中图分类号: O643

Structures and energetics of CO2 adsorption on the Fe3O4 (111) surface

Funds: 

the National Natural Science Foundation of China 21776304

the National Natural Science Foundation of China 21473229

the National Natural Science Foundation of China 91545121

the Shanxi Province Science Foundation for Youth 201601D021048

More Information
  • 摘要: 利用密度泛函理论研究了CO2在Fe3O4(111)表面Fetet1和Feoct2两种终结的吸附行为。在Fetet1终结表面,当覆盖度为1/5 ML时,CO2倾向于线性吸附;而在高覆盖度下,弯曲的CO2与表面O作用形成CO32-结构。在Feoct2终结表面,CO2倾向于弯曲吸附,在1/6 ML和1/3 ML覆盖度时都可以形成CO32-和-COO结构。覆盖度对Fetet1终结的表面影响很弱,但是对Feoct2终结的表面影响很大。从热力学上来说,CO2在Feoct2终结表面的吸附要比Fetet1终结表面更有利。
  • Figure  1  Front (F) and top (T) views of the Fetet1 (a)- and Feoct2 (b)-terminated surfaces of Fe3O4(111) in a p(1×1) unit cell

    (purple, Fe atom; red, oxygen atom)

    Figure  2  CO2 adsorption on Fetet1-terminated Fe3O4(111) surface at 1/5 and 2/5 ML

    (purple, Fe atom; red, oxygen atom; grey, carbon atom)

    Figure  3  CO2 adsorption on the Feoct2-terminated Fe3O4(111) surface at 1/6 ML

    (purple, Fe atom; red, oxygen atom; grey, carbon atom)

    Figure  4  CO2 adsorption on the Feoct2-terminated Fe3O4(111) surface at 1/3 ML

    (purple, Fe atom; red, oxygen atom; grey, carbon atom)

    Figure  5  Local density of states of adsorbed CO2 on Fe3O4(111) surfaces (a)/(b): Figure 2(b)/2(c) on Fetet1-terminated surface; (c)/(d): Figure 3(c)/ Figure 4(a) on Feoct2-terminated surface

    (solid lines, after adsorption; dotted lines, before adsorption; red and blue lines, the front and back of two co-chemisorbed CO2 molecules on the surface)

    Figure  6  Schematic diagram of molecular orbital for the adsorbed CO2 on Fetet1-(a) and Feoct2-(b) terminated Fe3O4(111) surface

    (a): 1 at 1/5 ML; 3 at 2/5 ML; (b): 4, 5, and 6 at 1/6 ML; 11 at 1/3 ML

    Table  1  Computed net charges (q) of CO2 on the Fetet1- and Feoct2-terminated Fe3O4(111) surface

    Fe3O4 surface Adsorption model ML OCO qC qO(1) qO(2) qCO2
    None Free CO2 180.0 1.02 -0.51 -0.51 0
    Fetet1-terminated surface 2(a) 1/5 180.0 0.95 -0.51 -0.41 0.03
    2(b) 1/5 177.8 0.95 -0.50 -0.44 0.01
    2(c) 2/5a 178.1 0.98 -0.51 -0.42 0.05
    2/5b 131.4 0.73 -0.56 -0.55 -0.38
    Feoct2-terminated surface 3(a) 1/6 179.7 0.94 -0.53 -0.46 -0.05
    3(b) 1/6 146.4 0.46 -0.50 -0.47 -0.51
    3(c) 1/6 126.3 0.72 -0.58 -0.58 -0.44
    3(d) 1/6 127.5 0.71 -0.59 -0.56 -0.44
    3(e) 1/6 141.9 0.39 -0.52 -0.47 -0.60
    3(f) 1/6 126.1 0.66 -0.57 -0.56 -0.47
    4(1) 1/3a 146.0 0.50 -0.49 -0.42 -0.41
    1/3b 128.1 0.70 -0.59 -0.55 -0.44
    4(b) 1/3a 147.6 0.51 -0.48 -0.43 -0.40
    1/3b 127.7 0.70 -0.56 -0.59 -0.45
    note: a and b represent the front and back of two co-chemisorbed CO2 molecules on the surface model, respectively
    下载: 导出CSV
  • [1] GEUS W J. Preparation and properties of iron oxide and metallic iron catalysts[J]. Appl Catal A:Gen, 1986, 25(1/2):313-333. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0230036199
    [2] RAO K R, HUGGINS F E, MAHAJAN V, HUFFMAN G P. Mossbauer spectroscopy study of iron-based catalysts used in Fischer-Tropsch synthesis[J]. Top Catal, 1995, 2(1/4):71-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026298908
    [3] ZHANG H B, SCHRADER G L. Characterization of a fused iron catalyst for Fischer-Tropsch synthesis by in situ laser raman spectroscopy[J]. J Catal, 1985, 95(1):325-332. doi: 10.1016/0021-9517(85)90038-7
    [4] RETHWISCH D G, DUMESIC J A. Adsorptive and catalytic properties of supported metal oxides Ⅲ. Water-gas shift over supported iron and zinc oxides[J]. J Catal, 1986, 101(1):35-42. doi: 10.1016/0021-9517(86)90226-5
    [5] HUANG C S, XU L G, DAVIS B H. Fishcher-Tropsch synthesis:Impact of pretreatment of ultrafine iron oxide upon catalyst structure and selectivity[J]. Fuel Sci Technol Int, 1993, 11(5/6):639-664. https://www.researchgate.net/publication/232855235_Fischer-tropsch_synthesis_impact_of_pretreatment_of_ultrafine_iron_oxide_upon_catalyst_structure_and_selectivity
    [6] NEWSOME D S. The water-gas shift reaction[J]. Catal Rev Sci Eng, 1980, 21(2):275-318. doi: 10.1080/03602458008067535
    [7] ZHANG C L, LI S, WANG L J, WU T H, PENG S Y. Studies on the decomposition of carbon dioxide into carbon with oxygen-deficient magnetite I. Preparation, characterization of magnetite, and its activity of decomposing carbon dioxide[J]. Mater Chem Phys, 2000, 62(1):44-51. doi: 10.1016/S0254-0584(99)00169-8
    [8] ZHANG C L, LI S, WANG L J, WU T H, PENG S Y. Studies on the decomposition of carbon dioxide into carbon with oxygen-deficient magnetite Ⅱ. The effects of properties of magnetite on activity of decomposition CO2 and mechanism of the reaction[J]. Mater Chem Phys, 2000, 62(1):52-61. doi: 10.1016/S0254-0584(99)00168-6
    [9] ZHU L, YAO K L, LIU Z L. First-principles study of the polar(111) surface of Fe3O4[J]. Phys Rev B, 2006, 74(3):035409. doi: 10.1103/PhysRevB.74.035409
    [10] LI Y L, YAO K L, LIU Z L. Structure, stability and magnetic properties of the Fe3O4(110) surface:Density functional theory study[J]. Surf Sci, 2007, 601(3):876-882. doi: 10.1016/j.susc.2006.10.037
    [11] PENTCHCHEVA R, WENDLER F, MEYERHEIM H L, MORITZ W, JEDRECY N, SCHEFFLER M. Jahn-Teller stabilization of a "Polar" metal oxide surface:Fe3O4(001)[J]. Phys Rev Lett, 2005, 94(12):126101. doi: 10.1103/PhysRevLett.94.126101
    [12] HUANG D M, CAO D B, LI Y W, JIAO H J. Density function theory study of CO adsorption on Fe3O4(111) surface[J]. J Phys Chem B, 2006, 110(28):13920-13925. doi: 10.1021/jp0568273
    [13] YANG T, WEN X D, HUO C F, LI Y W, WANG J G, JIAO H J. Carburization of the Fe3O4(111) Surface[J]. J Phys Chem C, 2007, 112(16):6372-6379. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ021080213
    [14] PAYNE M C, ALLAN D C, ARIAS T A, JOANNOPOULOS J D. Iterative minimization techniques for ab initio total-energy calculations:Molecular dynamics and conjugate gradients[J]. Rev Mod Phys, 1992, 64(4):1045-1097. doi: 10.1103/RevModPhys.64.1045
    [15] MILMAN V, WINKLER B, WHITE J A, PICKARD C J, PAYNE M C, AKHMATASKAYA E V, NOBES R H. Electronic structure, properties, and phase stability of inorganic crystals:A pseudopotential plane-wave study[J]. Int J Quantum Chem, 2000, 77(5):895-910. doi: 10.1002/(ISSN)1097-461X
    [16] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [17] DUDAREV S L, BOTTON G A, SAVRASOV S Y, HUMPHREYS C J, SUTTON A P. Electron-energy-loss spectra and the structural stability of nickel oxide:An LSDA+U study[J]. Phys Rev B, 1998, 57(3):1505-1509. doi: 10.1103/PhysRevB.57.1505
    [18] MENG Y, LIU X W, HUO C F, GUO W P, CAO D B, PENG Q, ALBERT D, XAVIER G, YANG Y, WANG J G, JIAO H J, LI Y W, WEN X D. When density functional approximations meet iron oxides[J]. J Chem Theory Comput, 2016, 12(10):5132-5144. doi: 10.1021/acs.jctc.6b00640
    [19] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41(11):7892-7895. doi: 10.1103/PhysRevB.41.7892
    [20] MONKHORST H J, PACK J D. Special points for Brillonin-zone integrations[J]. Phys Rev B, 1976, 13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188
    [21] LOUIE S G, FROYEN S, COHEN M L. Nonlinear ionic pseudopotentials in spin-density-functional calculations[J]. Phys Rev B, 1982, 26(4):1738-1742. doi: 10.1103/PhysRevB.26.1738
    [22] NAYAK S K, NOOIJEN M, BERNASEK S L. Electronic structure study of CO adsorption on the Fe(001) surface[J]. J Phys Chem B, 2001, 105(1):164-172. doi: 10.1021/jp002314e
    [23] CHENG H S, REISER D B, DEAN S W JR, BAUMERT K. Structure and energetics of iron pentacarbonyl formation at an Fe(100) surface[J]. J Phys Chem B, 2001, 105(50):12547-12552. doi: 10.1021/jp0155112
    [24] GE Q, JENKINS S J, KING D A. Localisation of adsorbate-induced demagnetisation:CO chemisorbed on Ni{110}[J]. Chem Phys Lett, 2000, 327(3/4):125-130. https://www.researchgate.net/publication/223123164_Localisation_of_adsorbate-induced_demagnetisation_CO_chemisorbed_on_Ni110
    [25] WYCKOFF R W. Crystal Structures (Vol. 2)[M]. 2nd edition, 1982, p5.
    [26] SPENCER N D, SCHOONMAKER R C, SOMORJAI G A. Iron single crystals as ammonia synthesis catalysts:Effect of surface structure on catalyst activity[J]. J Catal, 1982, 74(1):129-135. doi: 10.1016/0021-9517(82)90016-1
    [27] TOPSOE H, DUMESIC J A, BOUDART M. Alumina as a textural promoter of iron synthetic ammonia catalysts[J]. J Catal, 1973, 28(3):477-488. doi: 10.1016/0021-9517(73)90141-3
    [28] LEMIRE C, MEYER R, HENRICH V E, SHAIKHUTDINOV S K, FREUND H J. The surface structure of Fe3O4(111) films as studied by CO adsorption[J]. Surf Sci, 2004, 572(1):103-114. doi: 10.1016/j.susc.2004.08.033
    [29] CONDON N G, MURRAY P W, LEIBSLE F M, THORNTON G, LENNIE A R, VAUGHAN D J. Fe3O4(111) termination of α-Fe2O3(0001)[J]. Surf Sci, 1994, 310(1/3):L609-L613. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0233621150
    [30] WEISS W, RANKE W. Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers[J]. Prog Surf Sci, 2002, 70(1):1-151. http://cn.bing.com/academic/profile?id=1d3e7333c05bbca4e5a82f83e6a3b96e&encoded=0&v=paper_preview&mkt=zh-cn
    [31] SHAIKHUTDINOV S K, RITTER M, WANG X G, OVER H, WEISS W. Defect structures on epitaxial Fe3O4(111) films[J]. Phys Rev B, 1999, 60(15/16):11062-11069. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ029000372
    [32] RITTER M, WEISS W. Fe3O4(111) surface structure determined by LEED crystallography[J]. Surf Sci, 1999, 432(1/2):81-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ025546280
    [33] WANG S G, CAO D B, LI Y W, WANG J G, JIAO H J. Chemisorption of CO2 on nickel surfaces[J]. J Phys Chem B, 2005, 109(40):18956-18963. doi: 10.1021/jp052355g
    [34] FREUND H J, MESSMER R P. On the bonding and reactivity of CO2 on metal surfaces[J]. Surf Sci, 1986, 172(1):1-30. doi: 10.1016/0039-6028(86)90580-7
    [35] GOPEL W, ROCKER G. Localized and delocalized charge transfer during adsorption on semiconductors:Experiments and cluster calculations on the prototype surface ZnO(1010)[J]. J Vac Sci Technol, 1982, 21(2):389-397. doi: 10.1116/1.571788
    [36] GOPEL W. Chemisorption and charge transfer at ionic semiconductor surfaces:Implication in desiging gas sensors[J]. Prog Surf Sci, 1985, 20(1):9-103. doi: 10.1016/0079-6816(85)90004-8
    [37] RUNGE F, GOPEL W. Comparative study on the reactivity of polycrystalline and single crystal ZnO surfaces:O2 and CO2 interaction[J]. Z Phys Chem, 1980, 123(2):173-192. doi: 10.1524/zpch.1980.123.2.173
    [38] HOTAN W, GOPEL W, HAUL R. Interaction of CO2 and CO with nonpolar Zinc oxide surfaces[J]. Surf Sci, 1979, 83(1):162-180. doi: 10.1016/0039-6028(79)90486-2
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  48
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-17
  • 修回日期:  2018-07-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-09-10

目录

    /

    返回文章
    返回