留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu助剂对聚乙烯醇辅助沉淀铁催化剂费托合成反应性能的影响

马彩莲 董光华 刘霞 陈建刚

马彩莲, 董光华, 刘霞, 陈建刚. Cu助剂对聚乙烯醇辅助沉淀铁催化剂费托合成反应性能的影响[J]. 燃料化学学报(中英文), 2018, 46(7): 835-840.
引用本文: 马彩莲, 董光华, 刘霞, 陈建刚. Cu助剂对聚乙烯醇辅助沉淀铁催化剂费托合成反应性能的影响[J]. 燃料化学学报(中英文), 2018, 46(7): 835-840.
MA Cai-lian, DONG Guang-hua, LIU Xia, CHEN Jian-gang. Effect of Cu promoter on polyvinyl alcohol-assisted preparation of iron catalyst for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 835-840.
Citation: MA Cai-lian, DONG Guang-hua, LIU Xia, CHEN Jian-gang. Effect of Cu promoter on polyvinyl alcohol-assisted preparation of iron catalyst for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 835-840.

Cu助剂对聚乙烯醇辅助沉淀铁催化剂费托合成反应性能的影响

基金项目: 

国家自然科学基金 21373254

煤转化国家重点实验室自主研究课题 SKLCC2018BWZ001

生物质热化学技术国家重点实验室项目(武汉)  

山西能源学院院级基金 ZY2017008

详细信息
  • 中图分类号: O643

Effect of Cu promoter on polyvinyl alcohol-assisted preparation of iron catalyst for Fischer-Tropsch synthesis

Funds: 

the National Natural Science Foundation of China 21373254

the Autonomous Research Project of State Key Laboratory of Coal Conversion SKLCC2018BWZ001

the State Key Laboratory of Biomass Thermal Chemistry Technology (Wuhan)  

the Foundation of Shanxi Institute of Energy ZY2017008

More Information
  • 摘要: 通过共沉淀法或聚乙烯醇(PVA)辅助共沉淀法分别制备了Fe2O3和FeCu催化剂,结合BET、XRD、SEM、H2-TPR等表征手段,研究了Cu助剂对PVA辅助的沉淀铁催化剂的织构性质、物相结构、形貌特征、还原行为以及F-T合成反应性能的影响。结果表明,Cu助剂的加入增大了铁基催化剂中α-Fe2O3的晶粒,减小了催化剂的BET比表面积和孔容,增大了孔径;改变了铁基催化剂的形貌;促进了铁基催化剂在H2中的还原。反应过程中,在催化剂中只添加Cu助剂时,有利于提高催化剂的反应活性,而当同时加入Cu助剂和PVA时,由于Cu助剂与PVA较强的相互作用,反而降低了催化剂的反应活性,且催化剂的选择性向轻质烃方向偏移。
  • 图  1  氧化态催化剂的孔径分布

    Figure  1  Pore size distribution of the catalysts as-prepared

    图  2  催化剂的SEM照片

    Figure  2  SEM images of Fe-Blank (a), Fe-PVA (b), FeCu-Blank (c) and FeCu-PVA (d) catalysts

    图  3  氧化态催化剂的XRD谱图

    Figure  3  XRD patterns of the catalysts as-prepared

    图  4  反应后催化剂的XRD谱图

    Figure  4  XRD patterns of the catalysts after reaction

    ●: magnetite; ▲: quartz

    图  5  氧化态催化剂的H2-TPR谱图

    Figure  5  H2-TPR profiles of the catalysts as-prepared

    图  6  氧化态催化剂的FT-IR谱图

    Figure  6  FT-IR profiles of the catalysts as-prepared

    图  7  催化剂的CO转化率随反应温度的变化

    Figure  7  CO conversion as a function of temperature for the catalysts

    图  8  催化剂的CH4和C5+选择性随反应温度的变化

    Figure  8  CH4 and C5+ selectivity as a function of temperature for the catalysts

    表  1  氧化态催化剂的织构性质

    Table  1  Textural properties of the catalysts as-prepared

    Catalyst BET surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Average pore size d/nm
    Fe-Blank 19.75 0.08 13.75
    Fe-PVA 11.46 0.07 24.06
    FeCu-Blank 24.02 0.09 14.68
    FeCu-PVA 7.78 0.04 19.36
    下载: 导出CSV
  • [1] YANG J, MA W, CHEN D, HOLMEN A, DAVIS B H. Fischer-Tropsch synthesis:A review of the effect of CO conversion on methane selectivity[J]. Appl Catal A:Gen, 2014, 470(0):250-260. http://www.sciencedirect.com/science/article/pii/S0926860X13006807
    [2] WANG T, WANG S G, LUO Q Q, LI Y W, WANG J G, BELLER M, JIAO H J. Hydrogen adsorption structures and energetics on iron surfaces at high coverage[J]. J Phys Chem C, 2014, 118(8):4181-4188. doi: 10.1021/jp410635z
    [3] SUO H Y, WANG S G, ZHANG C H, XU J, WU B S, YANG Y, XIANG H W, LI Y W. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2012, 286(0):111-123. http://www.sciencedirect.com/science/article/pii/S0021951711003599
    [4] DRY M E. Present and future applications of the Fischer-Tropsch process[J]. Appl Catal A:Gen, 2004, 276(1/2):1-3. http://www.sciencedirect.com/science/article/pii/S0926860X04007276
    [5] DRY M E, HOOGENDOORN J. Technology of the Fischer-Tropsch process[J]. Cat Rev-Sci Eng, 1981, 23(1/2):265-278. doi: 10.1080/03602458108068078
    [6] LI S, LI A, KRISHNAMOORTHY S, IGLESIA E. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catal Lett, 2001, 77(4):197-205. doi: 10.1023/A:1013284217689
    [7] de SMIT E, de GROOT F M, BLUME R, HÄVECKER M, KNOP-GERICKE A, WECKHUYSEN B M. The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts[J]. PCCP, 2010, 12(3):667-680. doi: 10.1039/B920256K
    [8] WIELERS A, KOEBRUGGE G, GEUS J. On the properties of silica-supported bimetallic Fe-Cu catalysts Part Ⅱ. Reactivity in the Fischer-Tropsch synthesis[J]. J Catal, 1990, 121(2):375-385. doi: 10.1016/0021-9517(90)90246-G
    [9] WIELERS A, HOP C, VAN BEIJNUM J, VAN der KRAAN A, GEUS J. On the properties of silica-supported bimetallic Fe-Cu catalysts Part Ⅰ. Preparation and characterization[J]. J Catal, 1990, 121(2):364-374. doi: 10.1016/0021-9517(90)90245-F
    [10] WAN H J, WU B S, ZHANG C H, XIANG H W, LI Y W. Promotional effects of Cu and K on precipitated iron-based catalysts for Fischer-Tropsch synthesis[J]. J Mol Catal A:Chem, 2008, 283(1/2):33-42. http://www.sciencedirect.com/science/article/pii/S1381116907006930
    [11] MA C L, DONG G H, CHEN J G. Effect of PVA concentration on structure and performance of precipitated iron-based catalyst for Fischer-Tropsch synthesis[J]. J Braz Chem Soc, 2017, 28(8):1564-1572. https://www.researchgate.net/publication/313113304_Effect_of_PVA_Concentration_on_Structure_and_Performance_of_Precipitated_Iron-Based_Catalyst_for_Fischer-Tropsch_Synthesis
    [12] 马彩莲. 新型铁基催化剂的制备化学及F-T合成反应性能研究[D]. 山西: 中国科学院山西煤炭化学研究所, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2956502

    MA Cai-lian. Preparation chemistry and Fischer-Tropsch synthesis performance of a novel iron catalyst[D]. Shanxi: Institute of Coal Chemistry, Chinese Academy of Sciences, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2956502
    [13] SUO H Y, ZHANG C H, WU B S, XU J, YANG Y, XIANG H W, LI Y W. A comparative study of Fe/SiO2 Fischer-Tropsch synthesis catalysts using tetraethoxysilane and acidic silica sol as silica sources[J]. Catal Today, 2012, 183(1):88-95. doi: 10.1016/j.cattod.2011.08.047
    [14] YANG Y, XIANG H W, XU Y Y, BAI L, LI Y W. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A:Gen, 2004, 266(2):181-194. doi: 10.1016/j.apcata.2004.02.018
    [15] QIN S D, ZHANG C H, XU J, WU B S, XIANG H W, LI Y W. Effect of Mo addition on precipitated Fe catalysts for Fischer-Tropsch synthesis[J]. J Mol Catal A:Chem, 2009, 304(1/2):128-134. http://www.sciencedirect.com/science/article/pii/S1381116909000612
    [16] MOGOROSI R P, FISCHER N, CLAEYS M, VAN STEEN E. Strong-metal-support interaction by molecular design:Fe-silicate interactions in Fischer-Tropsch catalysts[J]. J Catal, 2012, 289:140-150. doi: 10.1016/j.jcat.2012.02.002
    [17] COZAR O, LEOPOLD N, JELIC C, CHIS V, DAVID L, MOCANU A, TOMOAIA-COTISEL M. IR, Raman and surface-enhanced Raman study of desferrioxamine B and its Fe (Ⅲ) complex, ferrioxamine B[J]. J Mol Struct, 2006, 788(1):1-6. http://www.sciencedirect.com/science/article/pii/S0022286005003777
    [18] LI S, ZHU H Q, QIN Z F, WANG G F, ZHANG Y G, WU Z W, LI Z K, CHEN G, DONG W W, WU Z H. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B:Environ, 2014, 144:498-506. doi: 10.1016/j.apcatb.2013.07.049
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  53
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-25
  • 修回日期:  2018-04-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-07-10

目录

    /

    返回文章
    返回