留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Core-shell hierarchical tungsten carbide composite microspheres towards methanol electrooxidation

ZHONG Sheng-wen HU Xian-chao YU Yuan YU Chang-lin ZHOU Yang

钟盛文, 胡仙超, 俞园, 余长林, 周阳. 核壳结构碳化钨复合微球催化剂对甲醇电催化性能[J]. 燃料化学学报(中英文), 2018, 46(5): 585-591.
引用本文: 钟盛文, 胡仙超, 俞园, 余长林, 周阳. 核壳结构碳化钨复合微球催化剂对甲醇电催化性能[J]. 燃料化学学报(中英文), 2018, 46(5): 585-591.
ZHONG Sheng-wen, HU Xian-chao, YU Yuan, YU Chang-lin, ZHOU Yang. Core-shell hierarchical tungsten carbide composite microspheres towards methanol electrooxidation[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 585-591.
Citation: ZHONG Sheng-wen, HU Xian-chao, YU Yuan, YU Chang-lin, ZHOU Yang. Core-shell hierarchical tungsten carbide composite microspheres towards methanol electrooxidation[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 585-591.

核壳结构碳化钨复合微球催化剂对甲醇电催化性能

基金项目: 

National Natural Science Foundation of China 51404110

National Natural Science Foundation of China 21567008

National Natural Science Foundation of China 21506187

Education Department Project Fund of Jiangxi Province GJJ150665

Program of 5511 Talents in Scientific and Technological Innovation of Jiangxi Province 20165BCB18014

Undergraduate Innovation Training Program XZG-16-08-14

详细信息
  • 中图分类号: O646

Core-shell hierarchical tungsten carbide composite microspheres towards methanol electrooxidation

Funds: 

National Natural Science Foundation of China 51404110

National Natural Science Foundation of China 21567008

National Natural Science Foundation of China 21506187

Education Department Project Fund of Jiangxi Province GJJ150665

Program of 5511 Talents in Scientific and Technological Innovation of Jiangxi Province 20165BCB18014

Undergraduate Innovation Training Program XZG-16-08-14

More Information
  • 摘要: 以偏钨酸铵微球为前驱体,在不同反应时间和CO/CO2气氛条件下,通过原位还原碳化反应制备了具有核壳结构碳化钨复合微球。采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)和扫描电镜(SEM)等对催化剂的形貌和结构进行了表征分析。硼氢化钠还原法将平均粒径为4.6 nm的Pt纳米粒子均匀分布在其表面,得到核壳结构碳化钨复合催化剂。采用循环伏安和计时电流法研究了在酸性溶液中催化剂对甲醇的电催化氧化性能。结果表明,与Pt/WC-15 h和JM Pt/C催化剂的电化学性能相比,Pt/WC-6 h催化剂对甲醇呈现出更高的电催化氧化活性和稳定性。碳化钨复合微球表面少量WO2成分的存在有利于甲醇在其表面的电催化氧化过程的发生。
  • Figure  1  XRD patterns of (a) WCO-6 h, (b) WCO-10 h and (c) WC-15 h

    Figure  2  SEM images of ((a), (b)) WCO-6 h and ((c), (d)) WC-15 rowspan=""

    Figure  3  XPS spectrum of Pt/WCO-6 h and Pt/WC-15 h, showing the peaks for the (a) C 1s and (b) W 4f elements

    Figure  4  XRD patterns of (a) Pt/WCO-6 h and (b) Pt/WC-15 h

    Figure  5  (a), (b) Typical TEM images of the as-prepared Pt/WCO-6 h with different magnifications; (c) EDS of Pt/WCO-6 h catalyst

    Figure  6  Cyclic voltammetric curves of Pt/WCO-6 h, Pt/WC-15 h and JM Pt/C catalysts in (a) 0.5 mol/L H2SO4 and (b) 0.5 mol/L H2SO4 + 1.0 mol/L CH3OH solution at the scan rate of 50 mV/s

    Figure  7  Chronoamperometric curves of Pt/WCO-6 h, Pt/WC-15 h and JM Pt/C catalysts at (a) 0.4 V and (b) 0.6 V for 6000 s in 0.5 mol/L H2SO4 + 1.0 mol/L CH3OH solution

  • [1] LANG X, SHI M, JIANG Y, CHEN H, MA C. Tungsten carbide/porous carbon core-shell nanocomposites as a catalyst support for methanol oxidation[J]. RSC Adv, 2016, 6(17):13873-13880 doi: 10.1039/C5RA18817B
    [2] JING S C, GUO X L, TAN Y W. Branched Pd and Pd-based trimetallic nanocrystals with highly open structures for methanol electrooxidation[J]. J Mater Chem A, 2016, 4(20):7950-7961. doi: 10.1039/C5TA10046A
    [3] ZHOU Y, HU X C, ZENG M, FU J X, ZHONG S W. Platinum nanoparticles supported on three-dimensionalgraphene as electro-cacatalyst for methanol oxidation[J]. J Fuel Chem Technol, 2017, 45(2):194-199.
    [4] CHEN Z Y, MA C A, ChU Y Q, JIN J M, LIN X, HARDACRE C, LIN W F. WC@meso-Pt core-shell nanostructures for fuel cells[J]. Chem Commun, 2013, 49(99):11677-11679. doi: 10.1039/c3cc46595k
    [5] MA C A, LIU W, SHI M, LANG X, CHU Y, CHEN Z, ZHAO D, LIN W, HARDACRE C. Low loading platinum nanoparticles on reduced graphene oxide-supported tungsten carbide crystallites as a highly active electrocatalyst for methanol oxidation[J]. Electrochim Acta, 2013, 114:133-141. doi: 10.1016/j.electacta.2013.10.034
    [6] GANESAN R, HAM D J, LEE J S. Platinized mesoporous tungsten carbide for electrochemical methanol oxidation[J]. Electrochem Commun, 2007, 9(10):2576-2579. doi: 10.1016/j.elecom.2007.08.002
    [7] MELLINGER Z J, KELLY T G, CHEN J G. Pd-Modified tungsten carbide for methanol electro-oxidation:From surface science studies to electrochemical evaluation[J]. ACS Catal, 2012, 2(5):751-758. doi: 10.1021/cs200620x
    [8] ZELLNER M B, CHEN J G. Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts[J]. Catal Today, 2005, 99(3/4):299-307.
    [9] WEIGERT E C, ZELLNER M B, STOTTLEMYER A L, CHEN J G. A combined surface science and electrochemical study of tungsten carbides as anode electrocatalysts[J]. Top Catal, 2007, 46(3/4):349-357 doi: 10.1007/s11244-007-9006-7.pdf
    [10] WANG Y, SONG S, MARAGOU V, SHEN P K. TSIAKARAS P. High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction[J]. Appl Catal B:Environ, 2009, 89:223-228. doi: 10.1016/j.apcatb.2008.11.032
    [11] GANESAN R, LEE J S. Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation[J]. Angew Chem, Int Ed, 2005, 44:6557-6560. doi: 10.1002/(ISSN)1521-3773
    [12] HAM D J, GANESAN R, LEE J S. Tungsten carbide microsphere as an electrode for cathodic hydrogen evolution from water[J]. Int J Hydrogen Energy, 2008, 33:6865-6872. doi: 10.1016/j.ijhydene.2008.05.045
    [13] HUNT S T, NIMMANWUDIPONG T, ROMAN-LESHKOV Y. Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis[J]. Angew Chem, Int Ed, 2014, 126(20):5231-5236 doi: 10.1002/ange.v126.20
    [14] XIAO P, GE X, WANG H, LIU Z, FISHER A, WANG X. Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution[J]. Adv Funct Mater, 2015, 25(10):1520-1526 doi: 10.1002/adfm.201403633
    [15] YANG X, KIMMEL Y C, FU J, KOEL B E, CHEN J G. Activation of tungsten carbide catalysts by use of an oxygen plasma pretreatment[J]. ACS Catal, 2012, 2(5):765-769. doi: 10.1021/cs300081t
    [16] KIMMEL Y C, ESPOSITO D V, BIRKMIRE R W, CHEN J G. Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts[J]. Int J Hydrogen Energy, 2012, 37(4):3019-3024. doi: 10.1016/j.ijhydene.2011.11.079
    [17] HUNT S T, MILINA M, ALBA-RUBIO A C, HENDON C H, DUMESIC J A, ROMAN-LESHKOV Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts[J]. Science, 2016, 352(6288):974-978. doi: 10.1126/science.aad8471
    [18] HUNT S T, KOKUMAI T M, ZANCHET D, ROMANLESHKOV Y. Alloying tungsten carbide nanoparticles with tantalum:Impact on electrochemical oxidation resistance and hydrogen evolution activity[J]. J Phys Chem C, 2015, 119(24). http://cn.bing.com/academic/profile?id=b15fb4d9cc782aea653ca3ead0da4452&encoded=0&v=paper_preview&mkt=zh-cn
    [19] HOOR F S, AHMED M F, MAYANNA S M. Methanol oxidative fuel cell:Electrochemical synthesis and characterization of low-priced WO3-Pt anode material[J]. J Solid State Electrochem, 2004, 8(8):572-576. https://www.researchgate.net/publication/244033746_Methanol_oxidative_fuel_cell_Electrochemical_synthesis_and_characterization_of_low-priced_WO3-Pt_anode_material
    [20] YE J L, LIU J G, ZOU ZG, GU J, YU T. Preparation of Pt supported on WO3-C with enhanced catalytic activity by microwave-pyrolysis method[J]. J Power Sources, 2010, 195(9):2633-2637. doi: 10.1016/j.jpowsour.2009.11.055
    [21] ZHOU Y, HU X C, LIU XH, WEN H R. Core-shell hierarchical WO2/WO3 microspheres as an electrocatalyst support for methanol electrooxidation[J]. Chem Commun, 2015, 51:15297-15299. doi: 10.1039/C5CC06603D
    [22] ZHOU Y, HU X C, XIAO Y J, SHU Q. Platinum nanoparticles supported on hollow mesoporous tungsten trioxide microsphere as electrocatalyst for methanol oxidation[J]. Electrochim Acta, 2013, 111:588-592. doi: 10.1016/j.electacta.2013.08.057
    [23] GANESAN R, LEE J S. Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation[J]. Angew Chem, Int Ed, 2005, 44(40):6557-6560. doi: 10.1002/(ISSN)1521-3773
    [24] MA C A, BRANDON N, LI G. Preparation and formation mechanism of hollow microspherical tungsten carbide with mesoporosity[J]. J Phys Chem C, 2007, 111(26):9504-9508. doi: 10.1021/jp072378q
    [25] KATRIB A, HEMMING F, WEHRER P, HILAIRE L, MAIRE G. Surface characterization and catalytic properties of supported tungsten and platinum-tungsten carbide and oxycarbide[J]. Top Catal, 1994, 1(1/2):75-85. doi: 10.1007/BF01379577.pdf
    [26] LANG X, SHI M, CHU Y, LIU W, CHEN Z, MA C. Microwave-assisted synthesis of Pt-WC/TiO2 in ionic liquid and its application for methanol oxidation[J]. J Solid State Electrochem, 2013, 17(9):2401-2408. doi: 10.1007/s10008-013-2060-0
    [28] LIM B, JIANG M, CAMARGO P H C, CHO E C, TAO J, LU X, ZHU Y, XIA Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009, 324(5932):1302. doi: 10.1126/science.1170377
    [28] CHEN S, WEI Z, QI X Q, DONG L, GUO Y G, WAN L, SHAO Z, LI L. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity[J]. J Am Chem Soc, 2012, 134(32):13252. doi: 10.1021/ja306501x
    [29] GUO S, DONG S, WANG E. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker[J]. Adv Mater, 2010, 22(11):1269-1272. doi: 10.1002/adma.v22:11
    [30] CHANG J, FENG L, LIU C, XING W, HU X. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells[J]. Energy Environ Sci, 2014, 7(5):1628-1632. doi: 10.1039/c4ee00100a
    [31] MELLINGER Z J, KELLY T G, CHEN J G G. Pd-Modified tungsten carbide for methanol electro-oxidation:From surface science studies to electrochemical evaluation[J]. ACS Catal, 2012, 2(5):751-758. doi: 10.1021/cs200620x
    [32] KELLY T G, STOTTLEMYER A L, REN H, CHEN J G. Comparison of O-H, C-H, and C-O bond scission sequence of methanol on tungsten carbide surfaces modified by Ni, Rh, and Au[J]. J Phys Chem C, 2011, 115(14):6644-6650. doi: 10.1021/jp112006v
    [33] AND H H H, CHEN J G, AND K K, LAVIN J G. Potential application of tungsten carbides as electrocatalysts. 1. Decomposition of methanol over carbide-modified W(111)[J]. J Phys Chem B, 2001, 105(41):10037-10044. doi: 10.1021/jp0116196
    [34] TSEUNG A C C, CHEN K Y. Hydrogen spill-over effect on Pt/WO3 anode catalysts[J]. Catal Today, 1997, 38(4):439-443. doi: 10.1016/S0920-5861(97)00053-9
    [35] SHEN P K, CHEN K Y, TSEUNG A C C. Performance of Co-electrodeposited Pt-Ru/WO3 electrodes for the electrooxidation of formic-acid at room-temperature[J]. J Electroanal Chem, 1995, 389(1/2):223-225. https://www.sciencedirect.com/science/article/pii/002207289503974L
  • 加载中
图(7)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  52
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-13
  • 修回日期:  2018-03-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-05-10

目录

    /

    返回文章
    返回