留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由基浓度测定方法的再验证及其在煤化学中应用

吕海燕 方正美 张媛媛 钱虞峰 潘铁英 张德祥

吕海燕, 方正美, 张媛媛, 钱虞峰, 潘铁英, 张德祥. 自由基浓度测定方法的再验证及其在煤化学中应用[J]. 燃料化学学报(中英文), 2019, 47(11): 1281-1287.
引用本文: 吕海燕, 方正美, 张媛媛, 钱虞峰, 潘铁英, 张德祥. 自由基浓度测定方法的再验证及其在煤化学中应用[J]. 燃料化学学报(中英文), 2019, 47(11): 1281-1287.
LÜ Hai-yan, FANG Zheng-mei, ZHANG Yuan-yuan, QIAN Yu-feng, PAN Tie-ying, ZHANG De-xiang. Revalidation of measurement method of free radical concentration and its application in coal chemistry[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1281-1287.
Citation: LÜ Hai-yan, FANG Zheng-mei, ZHANG Yuan-yuan, QIAN Yu-feng, PAN Tie-ying, ZHANG De-xiang. Revalidation of measurement method of free radical concentration and its application in coal chemistry[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1281-1287.

自由基浓度测定方法的再验证及其在煤化学中应用

基金项目: 

国家重点研发计划项目 2016YFB0600303

详细信息
  • 中图分类号: TQ533.9;TQ529.1

Revalidation of measurement method of free radical concentration and its application in coal chemistry

Funds: 

the National Key Research and Development Program of China 2016YFB0600303

More Information
    Corresponding author: ZHANG De-xiang, Tel:021-64252367, E-mail:zdx@ecust.edu.cn
  • 摘要: 对前人建立的标准曲线法测煤中自由基浓度进行优化,以DPPH标准样品和基准样品的二次积分面积比值为新参数,结果显示新参数标准曲线法的实测值与理论值相对误差都在5%以内;重复性、复现性实验的相对标准偏差都小于3%。将新参数标准曲线法用于分析不同煤化程度煤和新疆黑山煤(HS)沥青质的自由基浓度,发现随着煤化程度增加,其煤中自由基浓度逐渐增大,从低阶褐煤的8.531×1017/g上升到高阶无烟煤3.37899×1019/g;而在HS煤液化过程中,随着加氢液化温度的升高,其沥青质自由基浓度逐渐下降,从290℃的1.5793×1018/g降到450℃的7.410×1017/g,沥青质自由基浓度变化趋势与其产率变化趋势相一致。
  • 图  1  DPPH标准曲线

    Figure  1  Standard curve of DPPH

    图  2  HS沥青质产率和自由基浓度随液化温度的变化

    Figure  2  Variation of asphaltene yield and free radical concentration of HS coal with liquefaction temperature

    图  3  HS不同加氢液化温度的沥青质产率和其自由基浓度关系

    Figure  3  Relationship between asphaltene yield and free radical concentration at different hydrogenation liquefaction temperatures for HS coal

    表  1  煤样的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of coal samples

    Coal Proximate analysis w/% Ultimate analysis wdaf/%
    Mad Ad Vdaf FCdaf C H N S Oa
    XLT 16.68 10.21 55.62 44.38 68.94 4.72 1.86 1.21 23.27
    NMH 15.06 5.12 51.35 48.65 73.52 5.68 0.96 0.24 19.60
    HS 4.50 9.45 40.39 59.61 79.80 5.02 0.93 0.86 13.39
    BLT 7.33 6.22 36.84 63.16 80.82 4.84 0.88 0.44 13.02
    DT 2.69 7.97 35.35 64.65 83.85 5.20 1.62 0.37 8.96
    LH 1.75 10.04 29.55 70.45 88.78 5.23 1.46 0.42 4.11
    JX 1.81 9.29 20.60 79.40 89.27 4.82 1.48 0.52 3.91
    HN 1.61 9.63 17.95 82.05 90.23 4.83 1.47 0.33 3.14
    JC 4.92 8.97 7.65 92.35 92.17 3.41 1.32 0.31 2.79
    a: by difference
    下载: 导出CSV

    表  2  标准曲线法准确性验证

    Table  2  Accuracy of standard curve method

    Sample(g) Measured value Nc/1016 Theoretical value Nc/1016 RE/%
    0.0057 2.8766 2.7847 3.30
    0.0095 4.5938 4.6411 -1.02
    0.0151 7.0573 7.3769 -4.33
    0.0205 10.1030 10.0150 0.88
    0.0244 11.9292 11.9203 0.07
    0.0294 13.9561 14.3630 -2.83
    下载: 导出CSV

    表  3  相同质量NMH煤的EPR测定

    Table  3  EPR determination of NMH coal with the same quantity

    NMH (g) Ng/(1018·g-1) AVG/(1018·g-1) R/% VAR/% RSD/%
    0.0100 2.0843
    0.0100 2.0601
    0.0103 2.0660 2.0702 4.39 0.11 1.61
    0.0098 2.1158
    0.0099 2.0250
    下载: 导出CSV

    表  4  相同质量BLT煤的EPR测定

    Table  4  EPR determination of BLT coal with the same quantity

    BLT (g) Ng/(1018·g-1) AVG/(1018·g-1) R/% VAR/% RSD/%
    0.0043 10.1352
    0.0043 10.2089
    0.0038 10.2584 10.2827 3.57 1.96 1.36
    0.0040 10.5024
    0.0037 10.3313
    下载: 导出CSV

    表  5  标准曲线法复现性测试

    Table  5  Reproducibility of standard curve method

    NMH(g) Ng/(1018·g-1) AVG/(1018·g-1) R/% VAR/% RSD/%
    week 1 week 2 week 3 week 4 week 5
    0.0042 2.1350 2.1025 2.0535 2.0318 2.1460 2.0938
    0.0079 2.0342 2.1104 1.9654 2.0231 2.0614 2.0389
    0.0119 2.0785 1.9876 2.0031 2.0034 2.0125 2.0170 3.73 0.10 1.57
    0.0165 2.0920 2.1388 2.0598 2.0134 2.1274 2.0863
    0.0209 2.0540 2.0033 2.0745 2.1003 2.1025 2.0669
    下载: 导出CSV

    表  6  不同煤化程度煤的EPR测试

    Table  6  EPR parameters of different rank coals

    Coal Coal rank Cdaf/% Ng/(1018·g-1) ΔH/(Gs) g
    XLT lignite 68.94 0.8513 5.46 2.00448
    NMH lignite 73.52 2.0702 6.95 2.00423
    HS long flame coal 79.80 9.3406 5.39 2.00381
    BLT non caking coal 80.82 10.2827 5.76 2.00372
    DT gas coal 83.85 15.2712 5.56 2.00370
    LH fat coal 88.78 16.1770 5.76 2.00305
    JX coking coal 89.27 19.0823 5.86 2.00297
    HN lean coal 90.23 21.9365 5.46 2.00281
    JC anthracite 92.17 33.7899 3.98 2.00280
    下载: 导出CSV
  • [1] 李小炯.我国煤炭资源清洁高效利用现状及对策建议[J].煤炭经济研究, 2019, 39(1):71-75. http://www.cnki.com.cn/Article/CJFDTotal-MTJN201901014.htm

    LI Xiao-jiong. Status and countermeasures of clean and efficient utilization of coal resources in China[J]. Coal Econ Res, 2019, 39(1):71-75. http://www.cnki.com.cn/Article/CJFDTotal-MTJN201901014.htm
    [2] JACOBSO M Z. Review of solutions to global warming, air pollution, and energy security[J]. Energy Environ Sci, 2009, 2:148-173. doi: 10.1039/B809990C
    [3] RYBERG M W, OWSIANIAK M, LAURENT A, HAUSCHILD M Z. Power generation from chemically cleaned coals:Do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning[J]. Energy Environ Sci, 2015, 8:2435-2447. doi: 10.1039/C5EE01799H
    [4] UBERSFELD J, ETIENNE A, COMBRISSON J. Paramagnetic resonance, a new property of coal-like materials[J]. Nature, 1954, 174(4430):614. http://cn.bing.com/academic/profile?id=51d7b2074335679bc28be53e10b3d7e5&encoded=0&v=paper_preview&mkt=zh-cn
    [5] CURRAN G P, STRUCK R T, GORIN E. Mechanism of hydrogen-transfer process to coal and coal extract[J]. Ind Eng Chem Process Des, 1967, 6(2):166-173. doi: 10.1021/i260022a003
    [6] PETRAKIS L, GRANDY D W. Free radicals in coals and coal conversion. 2. Effect of liquefaction processing conditions on the formation and quenching of coal free radicals[J]. Fuel, 1980, 59(4):227-232. doi: 10.1016/0016-2361(80)90139-8
    [7] PETRAKIS L, GRANDY D W. Free radicals in coals and coal conversion. 4. Investigation of the free radicals in selected macerals upon liquefaction[J]. Fuel, 1981, 60(2):120-124. doi: 10.1016/0016-2361(81)90005-3
    [8] MALHOTRA V M, BUCKMASTER H A. 9 and 34 GHz EPR study of the free radicals in various asphaltenes:Statistical correlation of the g-values with heteroatom content[J]. Org Geochem, 1985, 8(4):235-239. doi: 10.1016/0146-6380(85)90001-4
    [9] RUDNICK L R, TUETING D. Investigation of free radicals produced during coal liquefaction using ESR[J]. Fuel, 1984, 63(2):153-157. doi: 10.1016/0016-2361(84)90028-0
    [10] LIU G G, QIU G Z. A study of ESR spectrum of coal[J]. Chin J Magn Reson, 1999, 16(2):177-180. http://en.cnki.com.cn/CJFD_en_New/Detail.ashx?t=e&url=/Article_en/CJFDTOTAL-ZNGD199705004.htm
    [11] QIU N S, LI H L, JIN Z J. Temperature and time effect on the concentrations of free radicals in coal:Evidence from laboratory pyrolysis experiments[J]. Int J Coal Geol, 2007, 69(3):220-228. doi: 10.1016/j.coal.2006.04.002
    [12] 郑榕萍, 潘铁英, 史新梅.标准曲线法测定煤中自由基含量[J].波谱学杂志, 2011, 28(2):259-264. doi: 10.3969/j.issn.1000-4556.2011.02.010

    ZHENG Rong-ping, PAN Tie-ying, SHI Xin-mei. Quantitative determination of free radical content in coal by standard curve method[J]. J Mag Res, 2011, 28(2):259-264. doi: 10.3969/j.issn.1000-4556.2011.02.010
    [13] 刘瑞民, 夏伟平, 张德祥.溶剂供氢能力对褐煤加氢及其液化产物中自由基含量的影响[C]//2010中国新型煤化工发展及示范项目进展论坛论文集.华东理工大学, 2010: 228-235. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7377378

    LIU Rui-min, XIA Wei-ping, ZHANG De-xiang. Coal liquefaction and the free radicals concentration of liquefied with the different capability of hydrogen-donor[C]//Papers collection of 2010 forum on development and demonstration projects of new coal chemical industry in China. East China University of Science and Technology, 2010: 228-235. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7377378
    [14] 张蓬洲, 王者福.用电子自旋共振谱研究我国一些煤的自由基[J].燃料化学学报, 1992, 20(3):85-90.

    ZHANG Peng-zhou, WANG Zhe-fu. Study on free radicals of some coals in China by ESR spectrum[J]. J Fuel Chem Technol, 1992, 20(3):85-90.
    [15] RETCOFSKY H L, THOMPSON G P, HOUGH M. Electron spin resonance studies of coals and coal-derived asphaltenes[J]. ACS Symp Ser, 1977, 22(5):90-97. http://cn.bing.com/academic/profile?id=99d65ad86ce211f38b1977fdc783bf0d&encoded=0&v=paper_preview&mkt=zh-cn
    [16] SMITH M B, MARCH J. Advanced Organic Chemistry[M]. Hoboken:John Wiley & Sons, 2007.
    [17] 郭德勇, 韩德馨.构造煤的电子顺磁共振实验研究[J].中国矿业大学学报, 1999, 28(1):94-97. doi: 10.3321/j.issn:1000-1964.1999.01.023

    GUO De-yong, HAN De-xin. Electron paramagnetic resonance studies of the structurally disturbed coals[J]. J China Univ Min Technol, 1999, 28(1):94-97. doi: 10.3321/j.issn:1000-1964.1999.01.023
    [18] 陈丽诗.煤及加氢液化中间产物结构解析与分子模型构建[D].上海: 华东理工大学, 2018.

    CHEN Li-shi. Structure analysis and molecular model construction of coal and its intermediate products derived from coal hydroliquefaction[D]. Shanghai: East China University of Science and Technology, 2018.
    [19] SILBERNAGEL B G, GEBHARD A, DYRKACZ G R. Electron spin resonance of isolated coal macerals[J]. Fuel, 1986, 65(4):558-565. doi: 10.1016/0016-2361(86)90049-9
    [20] 吴爱坪, 潘铁英, 张德祥.中低阶煤热解过程中自由基的研究[J].煤炭转化, 2012, 35(2):1-5. doi: 10.3969/j.issn.1004-4248.2012.02.001

    WU Ai-ping, PAN Tie-ying, ZHANG De-xiang. Study on free radicals in low rank coal pyrolysis process[J]. Coal Convers, 2012, 35(2):1-5. doi: 10.3969/j.issn.1004-4248.2012.02.001
    [21] PILAWA B, PUSZ S, KRZESINSKA K. Application of electron paramagnetic resonance spectroscopy to examination of carbonized coal blends[J]. Inter J Coal Geol, 2009, 77(3):372-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2d0e455851f5005961b55a41f4d13db5
    [22] 宁奕飞, 张媛媛, 周扬, 陈丽诗, 潘铁英, 张德祥.反应时间对淖毛湖煤加氢液化中间产物自由基浓度影响研究[J].燃料化学学报, 2018, 46(11):1281-1287. doi: 10.3969/j.issn.0253-2409.2018.11.001

    NING Yi-fei, ZHANG Yuan-yuan, ZHOU Yang, CHEN Li-shi, PAN Tie-ying, ZHANG De-xiang. Effect of reaction time on free radical concentration in hydrogenation liquefaction of Naomaohu coal[J]. J Fuel Chem Technol, 2018, 46(11):1281-1287. doi: 10.3969/j.issn.0253-2409.2018.11.001
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  62
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-25
  • 修回日期:  2019-10-07
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-11-10

目录

    /

    返回文章
    返回