留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原位合成的Ni/Mg@MCM-41上的CO2甲烷化研究

王小柳 杨萌 朱玲君 朱啸南 王树荣

王小柳, 杨萌, 朱玲君, 朱啸南, 王树荣. 基于原位合成的Ni/Mg@MCM-41上的CO2甲烷化研究[J]. 燃料化学学报(中英文), 2020, 48(4): 456-465.
引用本文: 王小柳, 杨萌, 朱玲君, 朱啸南, 王树荣. 基于原位合成的Ni/Mg@MCM-41上的CO2甲烷化研究[J]. 燃料化学学报(中英文), 2020, 48(4): 456-465.
WANG Xiao-liu, YANG Meng, ZHU Ling-jun, ZHU Xiao-nan, WANG Shu-rong. CO2 methanation over Ni/Mg@MCM-41 prepared by in-situ synthesis method[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 456-465.
Citation: WANG Xiao-liu, YANG Meng, ZHU Ling-jun, ZHU Xiao-nan, WANG Shu-rong. CO2 methanation over Ni/Mg@MCM-41 prepared by in-situ synthesis method[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 456-465.

基于原位合成的Ni/Mg@MCM-41上的CO2甲烷化研究

基金项目: 

国家杰出青年科学基金 51725603

详细信息
  • 中图分类号: TK6

CO2 methanation over Ni/Mg@MCM-41 prepared by in-situ synthesis method

Funds: 

the National Science Fund for Distinguished Young Scholars 51725603

More Information
  • 摘要: 通过原位引入Mg一步法合成了Mg@MCM-41复合介孔材料,并将其作为载体制备了高性能Ni基CO2甲烷化催化剂。通过BET、XRD、TEM、CO2-TPD、TG等手段对催化剂进行了表征分析,着重比较了Mg/Si物质的量比对于催化剂特性的影响。结果表明,当Mg/Si物质的量比为0.05时能够在不破坏孔道结构的前提下显著增加催化剂上的碱性位,有效地提高了催化剂对CO2的吸附和活化,从而促进CO2甲烷化反应过程中反应物的转化。实验所制得的催化剂均具有较好的热稳定性和催化反应活性,其中,Ni/0.05Mg@MCM-41在CO2甲烷化反应表现出最优的催化性能,在320 ℃,1 MPa的条件下,CO2转化率和CH4选择性分别高达84.3%和97.8%。
  • 图  1  八通道活性测试装置示意图

    Figure  1  Scheme of the 8-channel parallel fixed-bed reactor (MPRS-8TS) at Zhejiang University

    图  2  N2物理吸附-脱附等温曲线(a)和孔径分布(b)

    Figure  2  N2 adsorption-desorption isotherms (a) and pore size distribution curves of the catalysts (b)

    图  3  载体((a), (b))和还原后((c), (d))催化剂的XRD谱图

    Figure  3  XRD patterns of the ((a), (b)) supports and ((c), (d)) reduced Ni based catalysts

    图  4  催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of the catalysts

    图  5  催化剂的CO2-TPD谱图

    Figure  5  CO2-TPD profiles of the catalysts

    图  6  催化剂的TEM照片((a1), (a2))Ni/MCM-41,((b1), (b2))Ni/0.05Mg@MCM-41和((c1), (c2)) Ni/0.1Mg@MCM-41

    Figure  6  TEM images of the catalysts((a1), (a2))Ni/MCM-41, ((b1), (b2)) Ni/0.05Mg@MCM-41 and ((c1), (c2))Ni/0.1Mg@MCM-41

    图  7  焙烧后催化剂的TG曲线

    Figure  7  TG curves of the calcined catalysts

    图  8  催化剂CO2甲烷化反应活性CO2转化率(a), CH4选择性(b), 320 ℃温度下催化剂的寿命评价(c)

    Figure  8  Catalytic activity of the catalysts conversion of CO2 (a), selectivity of CH4 (b) and life test of the catalysts at 320 ℃ (c)

    表  1  催化剂的物理化学特性

    Table  1  Physicochemical properties of the catalysts

    Catalyst ABET
    /(m2·g-1)
    dpore/
    nm
    vpore/
    (cm3·g-1)
    Mg/Si
    (molar ratio)
    Theoretical/%Actual w/% dNia/nm
    Mg Ni Mg Ni
    Ni/MCM-41 622.5 2.31 0.95 0 0 8.7 0.00 8.18 20
    Ni/0.05Mg@MCM-41 606.3 3.37 0.84 0.05 1.78 8.7 1.94 8.28 15
    Ni/0.1Mg@MCM-41 498.5 3.12 0.81 0.1 3.48 8.7 3.41 8.45 15
    a: Ni size calculated by XRD
    下载: 导出CSV
  • [1] SONG Q, ZHOU Z, HE L. Efficient, selective and sustainable catalysis of carbon dioxide[J]. Green Chem, 2017, 19(16):3707-3728. doi: 10.1039/C7GC00199A
    [2] FRONTERA P, MACARIO A, FERRARO M, ANTONUCCI P. Supported catalysts for CO2 methanation:A review[J]. Catalysts, 2017, 7:(2).
    [3] BAILERA M, LISBONA P, ROMEO L M, ESPATOLERO S. Power to gas projects review:Lab, pilot and demo plants for storing renewable energy and CO2[J]. Renewable Sustainable Energy Rev, 2017, 69:292-312. doi: 10.1016/j.rser.2016.11.130
    [4] CHEN J, WANG M, WANG S, LI X. Hydrogen production via steam reforming of acetic acid over biochar-supported nickel catalysts[J]. Int J Hydrogen Energy, 2018, 4(39):18160-18168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c051cd10f229ef4e87bc3f8ad7427c48
    [5] AZIZ M A A, JALIL A A, TRIWAHYONO S, SAAD M W A. CO2 methanation over Ni-promoted mesostructured silica nanoparticles:Influence of Ni loading and water vapor on activity and response surface methodology studies[J]. Chem Eng J, 2015, 260:757-764. doi: 10.1016/j.cej.2014.09.031
    [6] ZHU L, YIN S, YIN Q, WANG H, WANG S. Biochar:A new promising catalyst support using methanation as a probe reaction[J]. Energy Sci Eng, 2015, 3(2):126-134. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201610032
    [7] LI W, WANG H, JIANG X, ZHU J, LIU Z, GUO X, SONG C. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts[J]. Rsc Adv, 2018, 8(14):7651-7669. doi: 10.1039/C7RA13546G
    [8] YIN S, ZHU L, LIU Y, WANG S. The effect of titanium source on methanation over Ni/TiO2 catalysts[J]. Chem Res Chin Univ, 2017, 34:(2).
    [9] LEE G D, MOON M J, PARK J H, PARK S S, HONG S S. Raney Ni catalysts derived from different alloy precursors Part II. CO and CO2 methanation activity[J]. Korean J Chem Eng, 2005, 22(4):541-546.
    [10] BAYSAL Z, KURETI S. CO2 methanation on Mg-promoted Fe catalysts[J]. Appl Catal B:Environ, 2020, 262:118300. doi: 10.1016/j.apcatb.2019.118300
    [11] ALI S H, GIURCO D, ARNDT N, NICKLESS E, BROWN G, DEMETRIADES A, DURRHEIM R, ENRIQUEZ M A, KINNAIRD J, LITTLEBOY A, MEINERT L D, OBERHÄNSLI R, SALEM J, SCHODDE R, SCHNEIDER G, VIDAL O, YAKOVLEVA N. Mineral supply for sustainable development requires resource governance[J]. Nature, 2017, 543(7645):367-372. doi: 10.1038/nature21359
    [12] AZIZ M A A, JALIL A A, TRIWAHYONO S, AHMAD A. CO2 methanation over heterogeneous catalysts:Recent progress and future prospects[J]. Green Chem, 2015, 17(5):2647-2663. doi: 10.1039/C5GC00119F
    [13] WANG W, GONG J. Methanation of carbon dioxide:An overview[J]. Front Chem Sci Eng, 2011, 5(1):2-10. doi: 10.1007/s11705-010-0528-3
    [14] ZHAO D, SUN J, LI Q, STUCKY G D. Morphological control of highly ordered mesoporous silica SBA-15[J]. Chem Mater, 2000, 12(2):275-279. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=86ee40dbb9a39bdbef64f3094ed53900
    [15] BECK J S, VARTULI J C, ROTH W J, LEONOWICZ M E, KRESGE C T, SCHMITT K D, CHU C T W, OLSON D H, SHEPPARD E W. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am Chem Soc, 1992, 114(27):10834-10843. doi: 10.1021/ja00053a020
    [16] BACARIZA M C, GRACA I, BEBIANO S S, LOPES J M, HENRIQUES C. Micro- and mesoporous supports for CO2 methanation catalysts:A comparison between SBA-15, MCM-41 and USY zeolite[J]. Chem Eng Sci, 2018, 175:72-83. doi: 10.1016/j.ces.2017.09.027
    [17] 张加赢, 辛忠, 孟鑫, 陶淼.基于MCM-41的镍基甲烷化催化剂活性与稳定性[J].化工学报, 2014, 65(1):160-168. doi: 10.3969/j.issn.0438-1157.2014.01.020

    ZHANG Jia-ying, XIN Zhong, MENG Xin, TAO Miao. Activity and stability of nickel based MCM-41 methanation catalysts for production of synthetic natural gas[J]. CIESC J, 2014, 65(1):160-168. doi: 10.3969/j.issn.0438-1157.2014.01.020
    [18] TAN J, WANG J, ZHANG Z, MA Z, WANG L, LIU Y. Highly dispersed and stable Ni nanoparticles confined by MgO on ZrO2 for CO2 methanation[J]. Appl Surf Sci, 2019, 481:1538-1548. doi: 10.1016/j.apsusc.2019.03.217
    [19] 曾艳, 马宏方, 张海涛, 应卫勇, 房鼎业.燃烧法制备Ni基甲烷化催化剂:Mg、Mn和La助剂对催化性能的影响[J].天然气化工(C1化学与化工), 2015, 40(4):6-10. doi: 10.3969/j.issn.1001-9219.2015.04.002

    ZENG Yan, MA Hong-fang, ZHANG Hai-tao, YING Wei-yong, FANG Ding-ye. Ni-based methanation catalysts prepared by solution combustion method:Effect of Mg, Mn and La promoters[J]. Nat Gas Ind, 2015, 40(4):6-10. doi: 10.3969/j.issn.1001-9219.2015.04.002
    [20] BACARIZA M C, GRACA I, BEBIANO S S, LOPES J M, HENRIQUES C. Magnesium as promoter of CO2 methanation on Ni-Based USY zeolites[J]. Energy Fuels, 2017, 31(9):9776-9789. doi: 10.1021/acs.energyfuels.7b01553
    [21] XU L, WANG F, CHEN M, YANG H, NIE D, QI L, LIAN X. Alkaline-promoted Ni based ordered mesoporous catalysts with enhanced low-temperature catalytic activity toward CO2 methanation[J]. Rsc Adv, 2017, 7(30):18199-18210. doi: 10.1039/C7RA01673E
    [22] WANG X, ZHU L, ZHUO Y, ZHU Y, WANG S. Enhancement of CO2 methanation over La-Modified Ni/SBA-15 catalysts prepared by different doping methods[J]. ACS Sustainable Chem Eng, 2019, 7:14647-14660. doi: 10.1021/acssuschemeng.9b02563
    [23] WANG X, ZHU L, LIU Y, WANG S. CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2[J]. Sci Total Environ, 2018, 625:686-695. doi: 10.1016/j.scitotenv.2017.12.308
    [24] LIU Y, ZHU L, WANG S, FUKUDA S. Bio-MCM-41:A high-performance catalyst support derived from pyrolytic biochar[J]. New J Chem, 2018, 42(15):12394-12402. doi: 10.1039/C8NJ01063C
    [25] WANG X, LIU Y, ZHU L, LI Y, WANG K, QIU K, TIPPAYAWONG N, AGGARANGSI P, REUBROYCHAROEN P, WANG S. Biomass derived N-doped biochar as efficient catalyst supports for CO2 methanation[J]. J CO2 Util, 2019, 34:733-741. doi: 10.1016/j.jcou.2019.09.003
    [26] 洪新, 唐克.杂原子介孔Ce-MCM-41分子筛的制备及其吸附脱除甲硫醚性能[J].燃料化学学报, 2015, 43(4):456-461. doi: 10.3969/j.issn.0253-2409.2015.04.013

    HONG Xin, TANG Ke. Preparation of heteroatomic mesoporous Ce-MCM-41 molecular sieve and its performance in the adsorptive removal of dimethyl sulfide[J]. J Fuel Chem Technol, 2015, 43(4):456-461. doi: 10.3969/j.issn.0253-2409.2015.04.013
    [27] JIA W, LIU T, LI Q, YANG J. Highly efficient photocatalytic reduction of CO2 on surface-modified Ti-MCM-41 zeolite[J]. Catal Today, 2019, 335:221-227. doi: 10.1016/j.cattod.2018.11.046
    [28] MARLER B, OBERHAGEMANN U, VORTMANN S, GIES H. Influence of the sorbate type on the XRD peak intensities of loaded MCM-41[J]. Microporous Mater, 1996, 6(5/6):375-383. doi: 10.1016-0927-6513(96)00016-8/
    [29] SONG X, GUAN Q, SHU Y, ZHANG X, LI W. Facile in-situ encapsulation of highly dispersed Ni@MCM-41 for the trans-decalin production from hydrogenation of naphthalene at low temperature[J]. ChemCatChem, 2019, 11(4):1286-1294. doi: 10.1002/cctc.201801788
    [30] HAMMOND W, PROUZET E, MAHANTI S D, PINNAVAIA T J. Structure factor for the periodic walls of mesoporous MCM-41 molecular sieves[J]. Microporous Mesoporous Mater, 1999, 27(1):19-25. doi: 10.1016/S1387-1811(98)00222-4
    [31] ZHANG M, LIU Z, LIN G, ZHANG H. Pd/CNT-promoted CuZrO2/HZSM-5 hybrid catalysts for direct synthesis of DME from CO2/H2[J]. Appl Catal A:Gen, 2013, 451:28-35. doi: 10.1016/j.apcata.2012.10.038
    [32] 张旭, 孙文晶, 储伟.等离子体技术对CO2甲烷化用Ni/SiO2催化剂的改性作用[J].燃料化学学报, 2013, 41(1):96-101. doi: 10.3969/j.issn.0253-2409.2013.01.016

    ZHANG Xu, SUN Wen-jing, CHU Wei. Effect of glow discharge plasma treatment on the performance of Ni/SiO2 catalyst in CO2 methanation[J]. J Fuel Chem Technol, 2013, 41(1):96-101. doi: 10.3969/j.issn.0253-2409.2013.01.016
    [33] SONG J, SUN Y, BA R, HUANG S, ZHAO Y, ZHANG J, SUN Y, ZHU Y. Monodisperse Sr-La2O3 hybrid nanofibers for oxidative coupling of methane to synthesize C2 hydrocarbons[J]. Nanoscale, 2015, 7(6):2260-2264. doi: 10.1039/C4NR06660J
    [34] OCAMPO F, LOUIS B, KIWI-MINSKER L, ROGER A-C. Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1-xO2 catalysts for carbon dioxide methanation[J]. Appl Catal A:Gen, 2011, 392(1):36-44.
    [35] 朱秋军, 王海洋, 李振花. Ni基催化剂上CO甲烷化反应性能研究[J].天然气化工(C1化学与化工), 2012, 37(2):21-24. doi: 10.3969/j.issn.1001-9219.2012.02.004

    ZHU Qiu-jun, WANG Hai-yang, LI Zhen-hua. Study on methanation of carbon monoxide over nickel-based catalysts[J]. Nat Gas Ind, 2012, 37(2):17-20. doi: 10.3969/j.issn.1001-9219.2012.02.004
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  32
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-17
  • 修回日期:  2020-03-08
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-04-10

目录

    /

    返回文章
    返回