留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柠檬酸盐凝胶法制备纳米CuO-ZnO-ZrO2的工艺分析及CO2加氢制甲醇的性能

黄纯洁 陈绍云 费潇瑶 刘岱 陈健 张永春

黄纯洁, 陈绍云, 费潇瑶, 刘岱, 陈健, 张永春. 柠檬酸盐凝胶法制备纳米CuO-ZnO-ZrO2的工艺分析及CO2加氢制甲醇的性能[J]. 燃料化学学报(中英文), 2016, 44(3): 375-384.
引用本文: 黄纯洁, 陈绍云, 费潇瑶, 刘岱, 陈健, 张永春. 柠檬酸盐凝胶法制备纳米CuO-ZnO-ZrO2的工艺分析及CO2加氢制甲醇的性能[J]. 燃料化学学报(中英文), 2016, 44(3): 375-384.
HUANG Chun-jie, CHEN Shao-yun, FEI Xiao-yao, LIU Dai, CHEN Jian, ZHANG Yong-chun. Preparation of nanometer CuO-ZnO-ZrO2 catalysts through citrate-gel process and their catalytic properties for methanol synthesis from CO2[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 375-384.
Citation: HUANG Chun-jie, CHEN Shao-yun, FEI Xiao-yao, LIU Dai, CHEN Jian, ZHANG Yong-chun. Preparation of nanometer CuO-ZnO-ZrO2 catalysts through citrate-gel process and their catalytic properties for methanol synthesis from CO2[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 375-384.

柠檬酸盐凝胶法制备纳米CuO-ZnO-ZrO2的工艺分析及CO2加氢制甲醇的性能

详细信息
    通讯作者:

    张永春, Tel: 86-411-84986322, Fax: 86-411-84986322, E-mail:zalidy5518@vip.sina.com

  • 中图分类号: O643.3

Preparation of nanometer CuO-ZnO-ZrO2 catalysts through citrate-gel process and their catalytic properties for methanol synthesis from CO2

  • 摘要: 采用柠檬酸盐凝胶法制备出纳米CuO-ZnO-ZrO2(CZZ) 催化剂, 应用XPS、BET、XRD、H2-TPR、H2-TPD、CO2-TPD和TG-DTA等检测手段对催化剂及前驱体的结构进行表征.研究了湿凝胶干燥时间和柠檬酸用量对催化剂结构的影响, 并与燃烧法制得的催化剂进行对比, 考察了不同催化剂CO2加氢制甲醇的性能.研究表明, 延长湿凝胶干燥时间可有效防止催化剂焙烧时发生喷溅, 有利于催化剂中各组分的分散, 提高催化剂对H2和CO2的吸附能力; 112℃干燥48h制得的催化剂(CZZ-48h) BET比表面积为43.5m2/g, 高于燃烧法; 柠檬酸用量等于化学计量比时催化剂的性能最佳, 在240℃、2.6MPa、空速为3600h-1、H2/CO2(体积比) 为3的条件下甲醇时空收率达109.4g/(kg·h); 柠檬酸过量会影响催化剂组分的分散度, 并造成分解残留覆盖催化剂表面活性位而不利于CO2加氢反应.
  • 图  1  不同湿凝胶干燥时间和方式制备催化剂的XRD谱图

    Figure  1  XRD patterns of calcined CZZ catalysts prepared from different treatments

    ●: CuO; ■: ZnO; ▼: ZrO2

    图  2  不同湿凝胶干燥时间和方式制备催化剂的SEM照片

    Figure  2  SEM micrographs of calcined CZZ catalysts prepared from different treatments

    (a): CZZ-24 h; (b): CZZ-48 h; (c): CZZ-72 h; (d): CZZ-bake; (e): CZZ-comb

    图  3  不同湿凝胶干燥时间和方式制备催化剂的H2-TPR谱图

    Figure  3  H2-TPR patterns of calcined CZZ catalysts prepared from different treatments

    图  4  不同湿凝胶干燥时间和方式制备催化剂的H2-TPD谱图

    Figure  4  H2-TPD patterns of calcined CZZ catalysts prepared from different treatments

    图  5  不同湿凝胶干燥时间和方式制备催化剂的CO2-TPD谱图

    Figure  5  CO2-TPD patterns of calcined CZZ catalysts prepared from different treatments

    图  6  柠檬酸与催化剂前驱体的TG-DTG曲线

    Figure  6  TG and DTG profiles of citric acid and the dried gel of catalysts

    (a): citric acid; (b): CZZ-100; (c): CZZ-125; (d): CZZ-150

    图  7  催化剂CZZ-100、CZZ-125、CZZ-150的XRD谱图

    Figure  7  XRD patterns of CZZ-100、CZZ-125、CZZ-150

    ●: CuO; ■: ZnO; ▼: ZrO2

    图  8  CZZ-100、CZZ-125和CZZ-150催化剂的Cu 2p谱图

    Figure  8  XPS patterns of CZZ-100, CZZ-125 and CZZ-150

    表  1  不同Cu-ZnO-ZrO2催化剂的催化性能

    Table  1  Catalytic properties of different Cu-ZnO-ZrO2 catalysts

    CatalystCO2
    conversation
    x/%
    CH3OH
    selectivity
    s/%
    WTY of CH3OH
    /(g· kg-1· h-1)
    CZZ-24 h22.227.478.3
    CZZ-48 h22.338.1109.4
    CZZ-72 h24.533.5105.6
    CZZ-bake19.923.944.4
    CZZ-comb12.926.861.3
    CZZ-12526.424.583.2
    CZZ-15027.023.681.9
    reaction conditions: t=240 ℃, p=2.6 MPa, WHSV=3 600 h-1, and CO2/H2(mol ratio)=1:3
    下载: 导出CSV

    表  2  不同凝胶干燥时间和方式制备CZZ催化剂的物化性质

    Table  2  Physicochemical properties of calcined CZZ catalysts

    CatalystABET
    /(m2·g-1)
    v
    /(cm3·g-1)
    CuO crystallite size
    d /nm
    CZZ-24 h38.70.2014.9
    CZZ-48 h43.50.1711.8
    CZZ-72 h39.70.0912.0
    CZZ-bake15.90.0923.9
    CZZ-comb16.30.0616.2
    下载: 导出CSV

    表  3  催化剂的还原峰温度及还原峰在H2-TPR谱图中所占的面积比例

    Table  3  Temperatures of reduction peaks and their contributions to the H2-TPR profiles over catalysts

    Catalysttα /℃tβ /℃Aα/(Aα+Aβ) /%
    CZZ-24 h23825772
    CZZ-48 h23525775
    CZZ-72 h23225773
    CZZ-bake22625759
    CZZ-comb23025774
    Aα and Aβ represent the areas of α and β peaks,respectively
    下载: 导出CSV

    表  4  不同柠檬酸用量制备CuO-ZnO-ZrO2的XPS数据

    Table  4  Surface concentrations of CZZ catalysts prepared from different amounts of citric acid

    CatalystSurface concentrations wat/%
    Cu 2pZn 2pZr 3dC 1sO 1s
    CZZ-10019.611.96.0062.6
    CZZ-12517.110.34.115.253.3
    CZZ-15016.29.04.113.357.5
    下载: 导出CSV
  • [1] OLAH G A, PRAKASH G K S, GOEPPERT A. Anthropogenic chemical carbon cycle for a sustainable future[J]. J Am Chem Soc, 2011, 133(33): 12881-12898. doi: 10.1021/ja202642y
    [2] OLAH G A. Towards oil independence through renewable methanol chemistry[J]. AngewChemInt Ed, 2013, 52(1): 104-107.
    [3] MEITZNER G, IGLESIA E. New insights into methanol synthesis catalysts from X-ray absorption spectroscopy[J]. Catal Today, 1999, 53(3): 433-441. doi: 10.1016/S0920-5861(99)00135-2
    [4] 丛昱, 包信和, 张涛, 孙孝英, 梁东白, 田金忠, 黄宁表.超细Cu-ZnO-ZrO2催化剂上甲醇合成的TPSR和TPD研究[J].燃料化学学报, 2000, 28(3): 238-243. http://www.cqvip.com/Main/Detail.aspx?id=4348396

    CONG Yu, BAO Xin-he, ZHANG Tao, SUN Xiao-ying, LIANG Dong-bai, TIAN Jin-zhong, HUANG Ning-biao. TPSR and TPD studies of ultrafine Cu-ZnO-ZrO2 catalysts for methanol synthesis[J]. J Fuel Chem Technol, 2000, 28(3): 238-243. http://www.cqvip.com/Main/Detail.aspx?id=4348396
    [5] SUN Q, LIU C W, PAN W, ZHU Q M, DENG J F. In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al2O3 catalyst[J]. ApplCatal A: Gen, 1998, 171: 301-308.
    [6] 丛昱, 田金忠, 黄宁表, 徐长海, 张涛, 孙孝英, 关文, 梁东白.超细Cu-ZnO-ZrO2催化剂的制备及其催化CO2加氢合成甲醇的性能[J].催化学报, 2000, 21(3): 247-250. http://d.wanfangdata.com.cn/Periodical/cuihuaxb200003014

    CONG Yu, TIAN Jin-zhong, HUANG Ning-biao, XU Zhang-hai, ZHANG Tao, SUN Xiao-ying, GUAN Wen, LIANG Dong-bai. Preparation of ultrafine Cu-ZnO-ZrO2catalysts and CO2 hydrogenation performance[J]. Chin J Catal, 2000, 21(3): 247-250. http://d.wanfangdata.com.cn/Periodical/cuihuaxb200003014
    [7] ARENA F, BARBERA K, ITALIANO G, BONURAG, SPADARO L, FRUSTERI F. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalystsin the hydrogenation of carbon dioxide to methanol[J]. J Catal, 2007, 249(2): 185-194. doi: 10.1016/j.jcat.2007.04.003
    [8] LI C M, YUAN X D, FUJIMOTO K. Development of highly stable catalyst for methanol synthesis from carbon dioxide[J]. Appl Catal A: Gen, 2014, 469: 306-311. doi: 10.1016/j.apcata.2013.10.010
    [9] GAO P, LI F, XIAO F K, ZHAO N, WEI W, ZHONG L S, SUN Y H. Effect of hydrotalcite-containing precursors on the performance of Cu/Zn/Al/Zr catalysts for CO2 hydrogenation: Introduction of Cu2+ at different formation stages of precursors[J]. Catal Today, 2012, 194(1): 9-15. doi: 10.1016/j.cattod.2012.06.012
    [10] YANG R Q, YU X C, ZHANG Y, LI W Z, TSUBAKI N. A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2[J]. Fuel, 2008, 87(4/5): 443-450.
    [11] GUO X M, MAO D S, WANG S, WU G S, LU G Z. Combustion synthesis of CuO-ZnO-ZrO2 catalysts for the hydrogenation of carbon dioxide to methanol[J]. Catal Commun, 2009, 10(13): 1661-1664. doi: 10.1016/j.catcom.2009.05.004
    [12] 郭晓明, 毛东森, 卢冠忠, 王嵩. CuO-ZnO-ZrO2的柠檬酸燃烧法制备及其催化CO2加氢合成甲醇的性能[J].物理化学学报, 2012, 28(1): 170-176. http://www.whxb.pku.edu.cn/CN/abstract/abstract27824.shtml

    GUO Xiao-ming, MAO Dong-sen, LU Guan-zhong, WANG Song.Preparation of CuO-ZnO-ZrO2 by citric acid combustion method and its catalytic property for methanol synthesis from CO2 hydrogenation[J]. Acta Phys-Chem Sin, 2012, 28(1): 170-176. http://www.whxb.pku.edu.cn/CN/abstract/abstract27824.shtml
    [13] SHI L, YANG R Q, TAO K, YONEYAMA Y, TAN Y S, TSUBAKI N. Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: As-burnt Cu-ZnO/SiO2 catalyst for low-temperature methanol synthesis[J]. Catal Today, 2012, 185(1): 54-60. doi: 10.1016/j.cattod.2011.10.015
    [14] 朱毅青, 文艺, 赖梨芳, 宗封琦, 王剑.超细CuO/ZnO/TiO2-SiO2的表征和CO2加氢合成甲醇性能研究[J].燃料化学学报, 2004, 32(4): 486-491. http://rlhxxb.sxicc.ac.cn/EN/Y2004/V32/I04/486

    ZHU Yi-qing, WEN Yi, LAI Li-fang, ZONG Feng-qi, WANG Jian. Characterization and catalytic activity evaluation of ultrafine CuO/ZnO/TiO2-SiO2 catalysts for CO2 hydrogenation to methanol[J]. J Fuel Chem Technol, 2004, 32(4): 486-491. http://rlhxxb.sxicc.ac.cn/EN/Y2004/V32/I04/486
    [15] JUN K W, SHEN W J, RAO KS R, LEE K W. Residual sodium effect on the catalytic activity of Cu/ZnO/Al2O3 in methanol synthesis from CO2 hydrogenation[J]. Appl Catal A: Gen, 1998, 174: 231-238. doi: 10.1016/S0926-860X(98)00195-1
    [16] 孔秀琴, 唐兴江, 许珊, 王晓来.溶胶-凝胶自燃烧法制备的CuO-ZnO/Al2O3及催化二氧化碳加氢制甲醇的性能研究[J].分子催化, 2013, 27(2): 159-165.

    KONG Xiu-qin, TANG Xing-jiang, XU Shan, WANG Xiao-lai. Preparation of CuO-ZnO/Al2O3 by sol-gel auto-combustion method and its catalytic property for methanol synthesis from CO2 hydrogenation[J]. J Mol Catal, 2013, 27(2): 159-165.
    [17] 林建新, 王自庆, 张留明, 倪军, 王榕, 魏可镁.柠檬酸络合法制备Ba促进ZrO2负载Ru催化剂上氨合成反应性能[J].催化学报, 2012, 33(7): 1075-1079. http://www.cqvip.com/QK/93027X/201207/42694980.html

    LIN Jian-xin, WANG Zi-qing, ZHANG Liu-ming, NI Jun, WANG Rong, WEI Ke-mei. Ammonia synthesis over ruthenium catalysts using barium-doped zirconia as supports prepared by citric acid method[J]. Chin J Catal, 2012, 33(7): 1075-1079. http://www.cqvip.com/QK/93027X/201207/42694980.html
    [18] 景茂祥, 沈湘黔, 沈裕军.柠檬酸盐凝胶法制备纳米氧化镍的研究[J].无机材料学报, 2004, 19(2): 289-294. http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL200402004.htm

    JING Mao-xiang, SHEN Xiang-qian, SHEN Yu-jun.Preparation of nanometer nickel oxide by the citrate-gel process[J]. J Inorg Mater, 2004, 19(2): 289-294. http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL200402004.htm
    [19] BONURA G, CORDARO M, CANNILLA C, ARENA F, FRUSTERI F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol[J]. Appl Catal B: Environ, 2014, 152-153: 152-161. https://www.researchgate.net/publication/260166753_The_changing_nature_of_the_active_site_of_Cu-Zn-Zr_catalysts_for_the_CO2_hydrogenation_reaction_to_methanol
    [20] KARELOVIC A, BARGIBANT A, FERNÁNDEZ C, RUIZ P. Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions[J]. Catal Today, 2012, 197(1): 109-118. doi: 10.1016/j.cattod.2012.07.029
    [21] 张鲁湘, 张永春, 陈绍云.助剂TiO2对CO2催化加氢制甲醇催化剂CuO-ZnO-Al2O3性能的影响[J].燃料化学学报, 2011, 39(12): 912-917. doi: 10.1016/S1872-5813(12)60002-4

    ZHANG Lu-xiang, ZHANG Yong-chun, CHEN Shao-yun. Effect of promoter TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for CO2 catalytic hydrogenation to methanol[J]. J Fuel Chem Technol, 2011, 39(12): 912-917. doi: 10.1016/S1872-5813(12)60002-4
    [22] ZHANG Y P, FEI J H, YU Y M, ZHENG X M. Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified Al2O3[J]. Energy Convers Manage, 2006, 47(18/19): 3360-3367.
    [23] DONG X, ZHANG H B, LIN G D, YUAN Y Z, TSAI K R. Highly active CNT-promoted Cu-ZnO-Al2O3 catalyst for methanol synthesis from H2/CO/CO2[J]. Catal Lett, 2003, 85(3): 237-246.
    [24] 李基涛, 张伟德, 陈明旦, 区泽棠.铜基催化剂上CO2吸附的TPD和TPSR研究[J].天然气化工, 1998, 23(5): 14-17.

    LI Ji-tao, ZHANG Wei-de, CHEN Ming-dan, QU Ze-tang. TPD and TPSR study of CO2 adsorption on Cu-based catalysts[J]. J Nat Gas Chem, 1998, 23(5): 14-17.
    [25] ARENA F, ITALIANO G, BARBERA K, BORDIGA S, BONURA G, SPADARO L, FRUSTERI F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Appl Catal A: Gen, 2008, 350: 16-23. doi: 10.1016/j.apcata.2008.07.028
    [26] 庄豪仁, 李承恩, 殷之文. PLZT柠檬酸盐前驱体的热分解[J].无机材料学报, 1988, 3(1): 27-31. http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL198801004.htm

    ZHUANG Hao-ren, LI Cheng-en, YIN Zhi-wen. Pyrolysis of PLZT citrate precursor[J]. J Inorg Mater, 1988, 3(1): 27-31. http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL198801004.htm
    [27] SHI L, ZENG C Y, JIN Y Z, WANG T J, TSUBAKI N. A sol-gel auto-combustion method to prepare Cu/ZnO catalysts for low-temperature methanol synthesis[J]. Catal Sci Technol, 2012, 2: 2569-2577. doi: 10.1039/c2cy20423a
    [28] 徐征, 毛利群, 千载虎, 盛世善, 熊国兴. CO2加氢低压合成甲醇催化剂CuO/ZnO/ZrO2的光电子能谱研究[J].燃料化学学报, 1992, 20(3): 272-277. http://www.cnki.com.cn/Article/CJFDTotal-RLHX199203007.htm

    XU Zheng, MAO Li-qun, QIAN Zai-hu, SHENG Shi-shan, XIONG Guo-xing. Photoelectron spectroscopic study of CuO/ZnO/ZrO2 catalyst in low pressure methanol synthesis from CO2 and H2[J]. J Fuel Chem Technol, 1992, 20(3): 272-277. http://www.cnki.com.cn/Article/CJFDTotal-RLHX199203007.htm
    [29] BIESINGER M C, LAU L W M, GERSON A R, SMART R S C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn[J]. Appl Surf Sci, 2010, 257(3): 887-898. doi: 10.1016/j.apsusc.2010.07.086
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  40
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-20
  • 修回日期:  2015-12-30
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-03-30

目录

    /

    返回文章
    返回