留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锰负载钛锆和钛锡复合氧化物催化剂烟气脱汞实验研究

董璐 黄亚继 袁琦 程好强 丁守一 王圣 段钰锋

董璐, 黄亚继, 袁琦, 程好强, 丁守一, 王圣, 段钰锋. 锰负载钛锆和钛锡复合氧化物催化剂烟气脱汞实验研究[J]. 燃料化学学报(中英文), 2020, 48(6): 741-751.
引用本文: 董璐, 黄亚继, 袁琦, 程好强, 丁守一, 王圣, 段钰锋. 锰负载钛锆和钛锡复合氧化物催化剂烟气脱汞实验研究[J]. 燃料化学学报(中英文), 2020, 48(6): 741-751.
DONG Lu, HUANG Ya-ji, YUAN Qi, CHENG Hao-qiang, DING Shou-yi, WANG Sheng, DUAN Yu-feng. Experimental study on the mercury removal from flue gas using manganese modified titanium-zirconium and titanium-tin composite oxide catalysts[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 741-751.
Citation: DONG Lu, HUANG Ya-ji, YUAN Qi, CHENG Hao-qiang, DING Shou-yi, WANG Sheng, DUAN Yu-feng. Experimental study on the mercury removal from flue gas using manganese modified titanium-zirconium and titanium-tin composite oxide catalysts[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 741-751.

锰负载钛锆和钛锡复合氧化物催化剂烟气脱汞实验研究

基金项目: 

国家重点研发计划 2016YFC0201105

江苏省研究生科研创新计划 KYCX17_0079

东南大学优秀博士论文培育基金 3203009703

详细信息
  • 中图分类号: X511

Experimental study on the mercury removal from flue gas using manganese modified titanium-zirconium and titanium-tin composite oxide catalysts

Funds: 

the National Key Research and Development Project 2016YFC0201105

the Postgraduate Research & Practice Innovation Program of Jiangsu Province KYCX17_0079

the Scientific Research Foundation of Graduate School of Southeast University 3203009703

More Information
  • 摘要: 采用共沉淀法制备了TiO2、TiZr和TiSn载体,浸渍锰制备了10% MnO2的MnTi、MnTiZr和MnTiSn催化剂。采用BET、XRD、H2-TPR、FT-IR和XPS等对样品进行表征,并对三种催化剂进行固定床脱汞性能实验。结果表明,在100-300℃,MnTiZr和MnTiSn催化剂脱汞性能均优于MnTi催化剂,这归因于Sn和Zr的引入提升了催化剂比表面积和低温氧化还原性能,增加了催化剂表面的酸性位点数量、高价态锰离子和O*含量;在反应温度为150-300℃,MnTiSn催化剂脱汞效率均高于MnTiZr催化剂,这是由于前者具有更好的氧化还原性能,表面具有更多含量的高价态锰离子、O*含量和酸性位点数量;在Hg0脱除过程中,催化剂表面活性组分如高价态锰离子和O*均消耗,参与了Hg0氧化为Hg2+的反应,且MnTiSn催化剂表面活性组分的消耗量更多。
  • 图  1  固定床脱汞实验装置示意图

    Figure  1  Sketch diagram of mercury removal experimental apparatus

    图  2  载体和催化剂的XRD谱图

    Figure  2  XRD patterns of the supports and catalysts

    图  3  MnTi、MnTiZr和MnTiSn催化剂的H2-TPR谱图

    Figure  3  H2-TPR profiles of the MnTi, MnTiZr and the MnTiSn catalysts

    图  4  MnTi、MnTiZr和MnTiSn催化剂的FT-IR谱图

    Figure  4  FT-IR spectra of the MnTi, MnTiZr and MnTiSn catalysts

    图  5  新鲜MnTi、MnTiZr和MnTiSn催化剂表面Mn 2p (a)和O 1s (b) XPS谱图

    Figure  5  Mn 2p (a) and O 1s (b) XPS spectra of the fresh MnTi, MnTiZr and MnTiSn catalysts

    图  6  MnTi、MnTiZr和MnTiSn催化剂的脱汞效率

    Figure  6  Mercury removal efficiency of the MnTi, MnTiZr and MnTiSn catalysts(reaction condition: N2+ 5%O2)

    图  7  反应后的MnTiZr和MnTiSn催化剂表面Mn 2p (a)和O 1s (b) XPS谱图

    Figure  7  Mn 2p (a) and O 1s (b) XPS spectra of the spent MnTiZr and MnTiSn catalysts

    (reaction condition: N2+ 5% O2, 200 ℃)

    图  8  反应后的MnTiZr (a)和MnTiSn (b)催化剂表面Hg 4f XPS谱图

    Figure  8  Hg 4f XPS spectra of the spent MnTiZr (a) and MnTiSn (b) catalysts

    (reaction condition: N2+ 5% O2, 200 ℃)

    表  1  载体和催化剂的BET表征

    Table  1  BET surface area, pore volume and pore size of the supports and the catalysts

    Sample ABET/(m2·g-1) vt/(cm3·g-1) dave/nm
    TiO2 66.38 0.24 8.93
    TiZr 213.64 0.38 6.97
    TiSn 87.53 0.29 9.65
    MnTi 41.46 0.21 9.32
    MnTiZr 192.74 0.31 7.84
    MnTiSn 73.16 0.25 10.43
    下载: 导出CSV

    表  2  催化剂表面原子摩尔含量

    Table  2  Mole content of the atoms on the catalyst surface

    Sample Mn 2p /% O 1s /%
    Mn2+/MnT Mn3+/MnT Mn4+/MnT OL/OT O*/OT
    Fresh MnTi 43.5 30.2 26.3 74.7 25.3
    Fresh MnTiZr 39.1 27.3 33.6 60.4 39.6
    Fresh MnTiSn 21.9 33.8 44.3 42.1 57.9
    Spent MnTiZr 49.1 23.6 27.3 67.3 32.7
    Spent MnTiSn 39.5 29.7 30.8 58.1 41.9
    *: OT represents OL + O*, MnT represents Mn2+ + Mn3+ + Mn4+
    下载: 导出CSV
  • [1] ZHAO J X, LI H L, YANG Z Q, ZHU L, ZHANG M G, FENG Y, QU W Q, YANG J P, SHIH K. Dual roles of nano-sulfide in efficient removal of elemental mercury from coal combustion flue gas within a wide temperature range[J]. Environ Sci Technol, 2018, 52(21):12926-12933. doi: 10.1021/acs.est.8b04340
    [2] ZHAO S L, PUDASAINEE D, DUAN Y F, GUPTA R, LIU M, LU J H. A review on mercury in coal combustion process:Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Prog Energy Combust Sci, 2019, 73:26-64. doi: 10.1016/j.pecs.2019.02.001
    [3] 周强, 段钰锋, 卢平.燃煤电厂吸附剂喷射脱汞技术的研究进展[J].化工进展, 2018, 37(11):4460-4467. http://d.old.wanfangdata.com.cn/Periodical/hgjz201811044

    ZHOU Qiang, DUAN Yu-feng, LU Ping. Research progress on in-duct mercury removal by sorbent injection in power plant[J]. Chem Ind Eng Prog, 2018, 37(11):4460-4467. http://d.old.wanfangdata.com.cn/Periodical/hgjz201811044
    [4] YANG Z Q, LI H L, YANG J P, FENG S H, LIU X, ZHAO J X, QU W Q, LI P, FENG Y, LEE P H, SHIH K. Nanosized copper selenide functionalized zeolitic imidazolate framework-8(CuSe/ZIF-8) for efficient immobilization of gas-phase elemental mercury[J]. Adv Funct Mater, 2019, 29(17):1807191. doi: 10.1002/adfm.201807191
    [5] 王鹏鹰, 苏胜, 向军, 曹蕃, 尤默, 胡松, 孙路石, 张良平.低温SCR催化剂脱硝脱汞实验研究[J].燃烧科学与技术, 2014, 20(5):423-427. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201405009

    WANG Peng-ying, SU Sheng, XIANG Jun, CAO Fan, YOU Mo, HU Song, SUN Lu-shi, ZHANG Liang-ping. Experimental study on NO reduction and Hg0 oxidation over low temperature SCR catalyst[J]. J Combust Sci Technol, 2014, 20(5):423-427. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201405009
    [6] 池桂龙, 沈伯雄, 朱少文, 何川.改性SCR催化剂对单质汞氧化性能的研究[J].燃料化学学报, 2016, 44(6):763-768. doi: 10.3969/j.issn.0253-2409.2016.06.018

    CHI Gui-long, SHEN Bo-xiong, ZHU Shao-wen, HE Chuan. Oxidation of elemental mercury over modified SCR catalysts[J]. J Fuel Chem Technol, 2016, 44(6):763-768. doi: 10.3969/j.issn.0253-2409.2016.06.018
    [7] 赵莉, 何青松, 李琳, 陆强, 董长青, 杨勇平.改性SCR催化剂对Hg0催化氧化性能的研究[J].燃料化学学报, 2015, 43(5):628-634. doi: 10.3969/j.issn.0253-2409.2015.05.016

    ZHAO Li, HE Qing-song, LI Lin, LU Qiang, DONG Chang-qing, YANG Yong-ping. Research on the catalytic oxidation of Hg0 by modified SCR catalysts[J]. J Fuel Chem Technol, 2015, 43(5):628-634. doi: 10.3969/j.issn.0253-2409.2015.05.016
    [8] 耿新泽, 段钰锋, 胡鹏, 柳帅, 梁财. SCR气氛下Ce-W/TiO2催化剂的脱硝协同脱汞特性[J].中国环境科学, 2019, 39(4):1419-1426. doi: 10.3969/j.issn.1000-6923.2019.04.009

    GENG Xin-ze, DUAN Yu-feng, HU Peng, LIU Shuai, LIANG Cai. Characteristics of denitrification and mercury removal of Ce-W/TiO2 catalysts in SCR atmosphere[J]. China Environ Sci, 2019, 39(4):1419-1426. doi: 10.3969/j.issn.1000-6923.2019.04.009
    [9] ZHANG S B, ZHAO Y C, WANG Z H, ZHANG J Y, WANG L L, ZHENG C G. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2[J]. J Environ Sci, 2017, 53:141-150. doi: 10.1016/j.jes.2015.10.038
    [10] 于贤群, 鲍静静, 姜小祥, 杨宏旻. Mn-TiO2催化剂烟气脱汞性能及反应机理[J].中国电机工程学报, 2015, 35(13):3331-3337. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201513016

    YU Xian-qun, BAO Jing-jing, JIANG Xiao-xiang, YANG Hong-min. Performance and mechanism of catalytic oxidation for mercury by Mn-doped TiO2 catalysts in flue gas[J]. Proc CSEE, 2015, 35(13):3331-3337. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201513016
    [11] LIU J, GUO R T, SUN X, PAN W G, WANG Z Y, LIU X Y, SHI X, QIN H, HU C X. Simultaneous NO reduction and Hg0 oxidation over Sb modified Mn/TiO2 catalyst[J]. Mater Chem Phys, 2019, 232:88-98. doi: 10.1016/j.matchemphys.2019.04.061
    [12] ZHANG S B, ZHAO Y C, YANG J P, ZHANG J Y, ZHENG C G. Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas[J]. Chem Eng J, 2018, 348:618-629. doi: 10.1016/j.cej.2018.05.037
    [13] ZHANG Y P, GUO W Q, WANG L F, SONG M, YANG L J, SHEN K, XU H T, ZHOU C C. Characterization and activity of V2O5-CeO2/TiO2-ZrO2 catalysts for NH3-selective catalytic reduction of NOx[J]. Chin J Catal, 2015, 36(10):1701-1710. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201510008
    [14] ZHANG J Y, LI C T, ZHAO L Q, WANG T, LI S H, ZENG G M. A sol-gel Ti-Al-Ce-nanoparticle catalyst for simultaneous removal of NO and Hg0 from simulated flue gas[J]. Chem Eng J, 2017, 313:1535-1547. doi: 10.1016/j.cej.2016.11.039
    [15] ITO K, KAKINO S C, IKEUE K T, MACHIDA M. NO adsorption/desorption property of TiO2-ZrO2 having tolerance to SO2 poisoning[J]. Appl Catal B:Environ, 2007, 74(1):137-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=03c53d00ff724df367eb523d54c61198
    [16] ZHANG L, LI L L, CAO Y, XIONG Y, WU S G, SUN J F, TANG C J, GAO F, DONG L. Promotional effect of doping SnO2 into TiO2 over a CeO2/TiO2 catalyst for selective catalytic reduction of NO by NH3[J]. Catal Sci Technol, 2015, 5(4):2188-2196. doi: 10.1039/C4CY01412J
    [17] ZHANG Y P, HUANG T J, XIAO R, XU H T, ZHOU C C. A comparative study on the Mn/TiO2-M(M=Sn, Zr or Al) Ox catalysts for NH3-SCR reaction at low temperature[J]. Environ Technol, 2017, 39(10):1-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/21622515.2017.1329345
    [18] 李鹏, 张亚平, 肖睿, 沈凯, 孙克勤, 徐海涛, 周长城.整体式V2O5-WO3/TiO2-ZrO2催化剂用于NH3选择性催化还原NOx[J].中南大学学报(自然科学版), 2013, 44(4):1719-1726. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201304061

    LI Peng, ZHANG Ya-ping, XIAO Rui, SHEN Kai, SUN Ke-qin, XU Hai-tao, ZHOU Chang-cheng. Selective catalytic reduction of NOx with NH3 over V2O5-WO3/TiO2-ZrO2 monolith catalysts[J]. J Cent South Univ (Sci Technol), 2013, 44(4):1719-1726. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201304061
    [19] 李娟, 张亚平, 王文选, 王龙飞, 郭婉秋, 杨林军, 沈凯. TiO2-SnO2基钨催化剂的表面性质和NH3吸附特性及脱硝机理[J].东南大学学报(自然科学版), 2016, 46(1):92-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dndxxb201601016

    LI Juan, ZHANG Ya-ping, WANG Wen-xuan, WANG Long-fei, GUO Wan-qiu, YANG Lin-jun, SHEN Kai. Surface properties, NH3 adsorption characteristic and NOx removal mechanism of TiO2-SnO2 supported WO3 catalysts[J]. J Sout Univ (Nat Sci), 2016, 46(1):92-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dndxxb201601016
    [20] LIU J, LI X Y, ZHAO Q D, HAO C, WANG S B, TADÉ M. Combined spectroscopic and theoretical approach to sulfur-poisoning on Cu-Supported Ti-Zr mixed oxide catalyst in the selective catalytic reduction of NO[J]. ACS Catal, 2014, 4(8):2426-2436. doi: 10.1021/cs5005739
    [21] CHEN L, YAO X J, CAO J, YANG F M, TANG C J. DONG L. Effect of Ti4+ and Sn4+ co-incorporation on the catalytic performance of CeO2-MnOx catalyst for low temperature NH3-SCR[J]. Appl Surf Sci, 2019, 476: 283-292.
    [22] XIE J K, QU Z, YAN N Q, YANG S J, CHEN W M, HU L G, HUANG W J, LIU P. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery[J]. J Hazard Mater, 2013, 261:206-213. doi: 10.1016/j.jhazmat.2013.07.027
    [23] ZHAO L K, LI C T, LI S H, WANG Y, ZHANG J Y, WANG T, ZENG G M. Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5/ZrO2-CeO2 catalyst[J]. Appl Catal B:Environ, 2016, 198:420-430. doi: 10.1016/j.apcatb.2016.05.079
    [24] XU H M, XIE J K, MA Y P, QU Z, ZHAO S J, CHEN W M, HUANG W J, YAN N Q. The cooperation of FeSn in a MnOx complex sorbent used for capturing elemental mercury[J]. Fuel, 2015, 140:803-809. doi: 10.1016/j.fuel.2014.10.004
    [25] XU H M, QU Z, ZHAO S J, YUE D T, HUANG W J, YAN N Q. Enhancement of heterogeneous oxidation and adsorption of Hg0 in a wide temperature window using SnO2 supported LaMnO3 perovskite oxide[J]. Chem Eng J, 2016, 292:123-129. doi: 10.1016/j.cej.2016.01.078
    [26] DONG L H, TANG Y X, LI B, ZHOU L Y, GONG F Z, HE H X, SUN B Z, TANG C J, GAO F, DONG L. Influence of molar ratio and calcination temperature on the properties of TixSn1-xO2 supporting copper oxide for CO oxidation[J].Appl Catal B:Environ, 2016, 180:451-462. doi: 10.1016/j.apcatb.2015.06.034
    [27] YANG Y, LI H, ZHAO H T, QU R Y, ZHANG S, HU W S, YU X N, ZHU X B, LIU S J, ZHENG C H, GAO X. Structure and crystal phase transition effect of Sn doping on anatase TiO2 for dichloromethane decomposition[J]. J Hazard Mater, 2019, 371:156-164. doi: 10.1016/j.jhazmat.2019.02.103
    [28] GÁLVEZ-LÓPEZ M F, MUÑOZ-BATISTA M J, ALVARADO-BELTRÁNA C G, ALMARAL-SÁNCHEZ J L, BACHILLER-BAEZA B, KUBACKA A, FERMÁNDEZ-GARCÍAB M. Sn modification of TiO2 anatase and rutile type phases:2-Propanol photo-oxidation under UV and visible light[J]. Appl Catal B:Environ, 2018, 228:130-141. doi: 10.1016/j.apcatb.2018.01.075
    [29] YANG W, LIU Y X, WANG Q, PAN J F. Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation[J]. Chem Eng J, 2017, 326:169-181. doi: 10.1016/j.cej.2017.05.106
    [30] 张华伟, 陈江艳, 赵可, 牛庆欣, 王力. Mn/Ce掺杂改性半焦对模拟煤气中单质汞的脱除性能研究[J].燃料化学学报, 2016, 44(4):394-400. doi: 10.3969/j.issn.0253-2409.2016.04.002

    ZHANG Hua-wei, CHEN Jiang-yan, ZHAO Ke, NIU Qin-xin, WANG Li. Removal of vapor-phase elemental mercury from simulated syngas using semi-coke modified by Mn/Ce doping[J]. J Fuel Chem Technol, 2016, 44(4):394-400. doi: 10.3969/j.issn.0253-2409.2016.04.002
    [31] ZHOU Z J, LIU X W, LI C P, ELVIS C X K, XU M H. Seawater-assisted synthesis of MnCe/zeolite-13X for removing elemental mercury from coal-fired flue gas[J]. Fuel, 2020, 262:116605. doi: 10.1016/j.fuel.2019.116605
    [32] ZHANG A C, ZHANG Z H, CHEN J J, SHENG W, SUN L S, XIANG J. Effect of calcination temperature on the activity and structure of MnOx/TiO2 adsorbent for Hg0 removal[J]. Fuel Process Technol, 2015, 135:25-33. doi: 10.1016/j.fuproc.2014.10.007
    [33] JIA B H, GUO J X, LUO H D, SHU S, FANG N J, LI J J. Study of NO removal and resistance to SO2 and H2O of MnOx/TiO2, MnOx/ZrO2 and MnOx/ZrO2-TiO2[J]. Appl Catal A:Gen, 2018, 553:82-90. doi: 10.1016/j.apcata.2017.12.016
    [34] SHAN Y, YANG W, LI Y, LIU Y X, PAN J F. Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas[J]. Sci Total Environ, 2019, 697:134049. doi: 10.1016/j.scitotenv.2019.134049
    [35] ZHAO H T, YANG G, GAO X, PANG C H, KINGMAN S W, WU T. Hg0 capture over CoMoS/γ-Al2O3 with MoS2 nanosheets at low temperatures[J]. Environ Sci Technol, 2016, 50(2):1056-1064. doi: 10.1021/acs.est.5b04278
    [36] ZHAO H T, EZEH C I, YIN S F, XIE Z L, PANG C H, ZHENG C H, GAO X, WU T. MoO3-adjusted δ-MnO2 nanosheet for catalytic oxidation of Hg0 to Hg2+[J].Appl Catal B:Environ, 2020, 263:117829. doi: 10.1016/j.apcatb.2019.117829
    [37] LI J H, CHEN J J, KE R, LUO C K, HAO J M. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts[J]. Catal Commun, 2007, 8(12):1896-1900. doi: 10.1016/j.catcom.2007.03.007
    [38] WANG S X, GUO R T, PAN W G, CHEN Q L, SUN P, LI M Y, LIU S M. The deactivation of Ce/TiO2 catalyst for NH3-SCR reaction by alkali metals:TPD and DRIFT studies[J]. Catal Commun, 2017, 89:143-147. doi: 10.1016/j.catcom.2016.11.005
    [39] SUN P, GUO R T, LIU S M, WANG S X, PAN W G, LI M Y. The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu[J]. Appl Catal A:Gen, 2017, 531:129-138. doi: 10.1016/j.apcata.2016.10.027
    [40] WU Z B, JIANG B Q, LIU Y, ZHAO W R, GUAN B H. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method[J]. J Hazard Mater, 2007, 145(3):488-494. doi: 10.1016/j.jhazmat.2006.11.045
    [41] SMIRNIOTIS P G, SREEKANTH P M, PEÑA D A, JENKINS R G. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2:A comparison for low-temperature SCR of NO with NH3[J]. Ind Eng Chem Res, 2006, 45(19):6436-6443. doi: 10.1021/ie060484t
    [42] DONG L, HUANG Y J, CHEN H, LIU L Q, LIU C Q, XU L G, ZHA J R, WANG Y X, LIU H. Magnetic γ-Fe2O3-loaded attapulgite sorbent for Hg0 removal in coal-fired flue gas[J]. Energy Fuels, 2019, 33(8):7522-7533. doi: 10.1021/acs.energyfuels.9b01136
    [43] LIU Z Y, YANG W, XU W, LIU Y X. Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine[J]. Chem Eng J, 2018, 339:468-478. doi: 10.1016/j.cej.2018.01.148
    [44] LIU D J, ZHOU W G, WU J. Effect of Ce and La on the activity of CuO/ZSM-5 and MnOx/ZSM-5 composites for elemental mercury removal at low temperature[J]. Fuel, 2017, 194:115-122. doi: 10.1016/j.fuel.2016.12.076
    [45] XU Y L, ZHONG Q, LIU X Y. Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature[J]. J Hazard Mater, 2015, 283:252-259. doi: 10.1016/j.jhazmat.2014.09.034
    [46] HE J, REDDY G K, THIEL S W, SMIRNIOTIS P G, PINTO N G. Ceria-modified manganese oxide/titania materials for removal of elemental and oxidized mercury from flue gas[J]. J Phys Chem C, 2011, 115(49):24300-24309. doi: 10.1021/jp208768p
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  452
  • HTML全文浏览量:  167
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-14
  • 修回日期:  2020-06-05
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-06-10

目录

    /

    返回文章
    返回