留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaOH含量对HZSM-5分子筛性质及其催化甲缩醛气相羰基化性能的影响

武建兵 张晓艳 孙泽平 李海涛 周玮 赵永祥

武建兵, 张晓艳, 孙泽平, 李海涛, 周玮, 赵永祥. NaOH含量对HZSM-5分子筛性质及其催化甲缩醛气相羰基化性能的影响[J]. 燃料化学学报(中英文), 2019, 47(10): 1226-1234.
引用本文: 武建兵, 张晓艳, 孙泽平, 李海涛, 周玮, 赵永祥. NaOH含量对HZSM-5分子筛性质及其催化甲缩醛气相羰基化性能的影响[J]. 燃料化学学报(中英文), 2019, 47(10): 1226-1234.
WU Jian-bing, ZHANG Xiao-yan, SUN Ze-ping, LI Hai-tao, ZHOU Wei, ZHAO Yong-xiang. Effect of NaOH content for the properties of HZSM-5 zeolites and its catalytic performance on gas phase carbonylation of dimethoxymethane[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1226-1234.
Citation: WU Jian-bing, ZHANG Xiao-yan, SUN Ze-ping, LI Hai-tao, ZHOU Wei, ZHAO Yong-xiang. Effect of NaOH content for the properties of HZSM-5 zeolites and its catalytic performance on gas phase carbonylation of dimethoxymethane[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1226-1234.

NaOH含量对HZSM-5分子筛性质及其催化甲缩醛气相羰基化性能的影响

基金项目: 

国家自然科学基金 21703127

详细信息
  • 中图分类号: O643

Effect of NaOH content for the properties of HZSM-5 zeolites and its catalytic performance on gas phase carbonylation of dimethoxymethane

Funds: 

the National Natural Science Foundation of China 21703127

More Information
  • 摘要: 通过调变合成过程中NaOH的含量,制备了一系列HZSM-5分子筛,并对其催化甲缩醛(DMM)气相羰基化合成甲氧基乙酸甲脂(MMAc)反应性能进行了详细考察。结果表明,本合成体系中,NaOH含量为0.8%(质量分数)时,ZSM-5分子筛表现出最佳的催化活性。BET、27Al NMR、NH3-TPD、Py-FTIR等多种表征结果证实NaOH含量的改变可有效调变分子筛孔道中介孔孔容及中强Brønsted酸(B酸)位点的分布,两者是影响分子筛催化活性的主要因素。中强B酸位点增加,原料DMM反应加剧,转化率提高;介孔孔容增大,产物扩散途径缩短,孔道限域效应减弱,副反应被抑制,MMAc选择性增加。进一步采用密度泛函理论对DMM与HZSM-5分子筛作用过程进行了初步探索,发现反应过程中将首先形成甲氧基甲基(ZOCH2OCH3)中间物种,在此基础上,提出了DMM羰基化生成MMAc的可能机制。
  • 图  1  不同NaOH含量合成HZSM-5分子筛的XRD谱图

    Figure  1  XRD patterns of HZSM-5 zeolites prepared under different NaOH contents

    图  2  不同NaOH含量合成HZSM-5分子筛的SEM照片

    Figure  2  SEM images of HZSM-5 zeolites prepared under different NaOH contents

    图  3  不同NaOH含量合成的HZSM-5分子筛的氮气吸附-脱附等温曲线

    Figure  3  Nitrogen sorption isotherms of HZSM-5 zeolites prepared under different NaOH contents

    图  4  不同NaOH含量合成HZSM-5分子筛的27Al MAS NMR谱图

    Figure  4  27Al MAS NMR spectra of HZSM-5 catalysts prepared under different NaOH contents

    图  5  不同NaOH含量合成HZSM-5分子筛的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of HZSM-5 zeolites prepared under different NaOH contents

    图  6  不同NaOH含量合成HZSM-5分子筛的Py-FTIR谱图

    Figure  6  Py-FTIR spectra of HZSM-5 zeolites prepared under different NaOH contents

    图  7  DFT理论预测DMM在ZSM-5分子筛上的反应路径示意图

    Figure  7  Theoretically projected reaction path for DMM over ZSM-5

    图  8  ZSM-5分子筛上甲缩醛降解势能面示意图

    Figure  8  Potential energy surface of DMM decomposition over ZSM-5 zeolite

    图  9  DMM羰基化过程的可能反应机制

    Figure  9  Proposed mechanism of gas phase carbonylation of dimethoxymethan

    表  1  不同NaOH含量合成HZSM-5分子筛的组成及织构性质

    Table  1  Composition and textural properties of HZSM-5 catalysts prepared under different NaOH contents

    Sample Si/Al molar ratioa ABETb/(m2·g-1) vmicroc/(cm3·g-1) vmeso/(cm3·g-1)
    Z-0.14 27 328 0.15 0.10
    Z-0.27 25 351 0.13 0.16
    Z-0.54 23 357 0.13 0.17
    Z-0.81 20 362 0.12 0.21
    Z-1.1 16 359 0.12 0.17
    Z-1.3 15 344 0.12 0.12
    note: a: determined by XRF; b: determined by the BET method; c: determined by the t-plot method
    下载: 导出CSV

    表  2  不同NaOH含量合成HZSM-5分子筛的酸性特征

    Table  2  Acidic properties of HZSM-5 zeolites prepared under different NaOH contents

    Sample Acidity by strengthd /(mmol·g-1) Acidity by typee /(mmol·g-1)
    weak medium-strong Brønsted Lewis
    Z-0.14 0.28 0.26 0.43 0.43
    Z-0.27 0.33 0.42 0.52 0.29
    Z-0.54 0.40 0.48 0.53 0.24
    Z-0.81 0.44 0.48 0.59 0.27
    Z-1.1 0.68 0.64 0.58 0.20
    Z-1.3 0.82 0.66 0.56 0.24
    下载: 导出CSV

    表  3  不同NaOH含量合成ZSM-5分子筛的催化性能

    Table  3  Catalytic performance of H-ZSM-5 zeolites prepared under different NaOH contents

    Sample DMM conversion x/% Products selectivity s/%
    MMAc MF MeOH DME
    Z-0.14 2.5 35.3 35.9 3.1 25.7
    Z-0.27 4.6 40.3 31.9 2.1 25.6
    Z-0.54 9.9 61.3 18.6 1.4 18.6
    Z-0.81 11.9 69.3 17.2 1.2 12.2
    Z-1.1 9.3 56.8 24.6 1.5 17.2
    Z-1.3 7.1 59.6 21.0 1.9 17.5
    reaction conditions: 110 ℃, 0.6 MPa, DMM and CO rate of flow is 2.4×10-2 mol/h and 0.27 mol/h, 0.5 g catalysts
    下载: 导出CSV
  • [1] CELIK F E, KIM T J, MLINAR A N, BELL A T. An investigation into the mechanism and kinetics of dimethoxymethane carbonylation over FAU and MFI zeolites[J]. J Catal, 2010, 274(2):150-162. doi: 10.1016/j.jcat.2010.06.015
    [2] 石磊, 姚杰, 朱文良, 刘中民.磺酸树脂催化甲缩醛一步羰化制高附加值甲氧基乙酸甲酯[J].化工学报, 2017, 68(10):3739-3746. http://d.old.wanfangdata.com.cn/Periodical/hgxb201710010

    SHI Lei, YAO Jie, ZHU Wen-liang, LIU Zhong-min. Efficient sulfonic acid resin catalysts for carbonylation of dimethoxymethane to value-added methyl methoxyacetate[J]. CIESC J, 2017, 68(10):3739-3746. http://d.old.wanfangdata.com.cn/Periodical/hgxb201710010
    [3] 沈鑫权, 刘洪忠, 高志贤, 吾满江·艾力.甲缩醛与甲酸偶联合成甲氧基乙酸甲酯[J].天然气化工, 2012, 37(6):37-39. doi: 10.3969/j.issn.1001-9219.2012.06.009

    SHEN Xin-quan, LIU Hong-zhong, GAO Zhi-xian, WU Man-jiang Eli. Synthesis of methy methoxy acetate from methylal and formic acid[J]. Nat Gas Chem Ind, 2012, 37(6):37-39. doi: 10.3969/j.issn.1001-9219.2012.06.009
    [4] 杜碧林, 储伟, 于作龙.甲酸甲酯与三聚甲醛偶联合成乙醇酸甲酯*Ⅱ.硫酸/金属羰基化合物对收率的影响[J].天然气化工, 1998, 23(3):34-36.

    DU Bi-lin, CHU Wei, YU Zuo-long. Synthesis of methyl glycolate by coupling of methyl formate with trioxane*Ⅱ. Effect of sulfuric acid and metal carbonyl compound on yield[J]. Nat Gas Chem Ind, 1998, 23(3):34-36.
    [5] 贺德华, 黄卫国, 刘金尧.同时合成羟基乙酸甲脂和甲氧基乙酸甲脂的方法: 中国, 1180067A[P]. 2001-01-10.

    HE De-hua, HUANG Wei-guo, LIU Jing-yao. Method for simultaneously synthesizing glycolic acid methyl ester and methoxyacetic acid methyl ester: CN, 1180067A[P]. 2001-01-10.
    [6] HE D H, HUANG W G, LIU J Y. The activity of H4SiW12O40 for the coupling of formaldehyde and methyl formate to methyl glycolate and methyl methoxy acetate[J]. J Mol Catal A:Chem, 1999, 145:335-338. doi: 10.1016/S1381-1169(99)00166-1
    [7] LIU S P, ZHU W L, SHI L, LIU H C, LIU Y, NI Y M, LI L N, ZHOU H, XU S T, HE Y L, LIU Z M. A highly efficient Nafion-H catalyst for vapour phase carbonylation of dimethoxymethane[J]. RSC, 2014, 4(77):40999-41002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2891f5ef3bf10dfac561e33141ff6722
    [8] LIU S P, ZHU W L, SHI L, LIU H C, LIU Y, NI Y M, LI L N, ZHOU H, XU S T, HE Y L, LIU Z M. Activity enhancement of Nafion resin:Vapor-phase carbonylation of dimethoxymethane over Nafion-silica composite[J]. Appl Catal A:Gen, 2015, 497:153-159. doi: 10.1016/j.apcata.2015.03.010
    [9] BADMAEV S D, POTEMIN D I, PECHENKIN A A, VOLKOVA G G, SOBYANIN V A, PAMON A V N. Gas-phase carbonylation of dimethoxymethane to methyl methoxyacetate over the Cs2.5H0.5PW12O40 catalyst[J]. Dokl Phys Chem, 2016, 468(2):85-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f9ac67e1cfd5c04f1010f03f17ed7078
    [10] CELIK F E, KIM T J, BELL A T. Vapor-phase carbonylation of dimethoxymethane over H-Faujasite[J]. Angew Chem Int Ed, 2009, 48(26):4813-4815. doi: 10.1002/anie.200900464
    [11] CELIK F E, KIM T J, BELL A T. Effect of zeolite framework type and Si/Al ratio on dimethoxymethane carbonylation[J]. J Catal, 2010, 270(1):185-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2910f034e5d23050ca81aa68a7e03bfd
    [12] CHEUG P, BHAN A, SUNLEY G J, IGLESIA E. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angew Chem Int Ed, 2006, 45:1617-1620. doi: 10.1002/anie.200503898
    [13] BARRI S A I, CHADWICK D. Carbonylation of formaldehyde with zeolite catalysts[J]. Catal Lett, 2011, 141:749-753. doi: 10.1007/s10562-011-0616-0
    [14] REDDY J K, MOTOKURA K, KOYAMA T, MIYAJI A, BABA T. Effect of morphology and particle size of ZSM-5 on catalytic performance for ethylene conversion and heptane cracking[J]. J Catal, 2012, 289:53-61. doi: 10.1016/j.jcat.2012.01.014
    [15] KIM J, CHOI M, RYONG R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. J Catal, 2010, 269(1):219-228. doi: 10.1016/j.jcat.2009.11.009
    [16] YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J K, TASUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J Phys Chem C, 2015, 119:15303-15315. doi: 10.1021/acs.jpcc.5b03289
    [17] LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over H-ZSM-5 zeolite:Reaction pathway is related to the framework aluminum siting[J]. ACS Catal, 2016, 6(11):7311-7325. doi: 10.1021/acscatal.6b01771
    [18] FRISCH M L, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Revision A.02, Gaussian Inc: allingford, CT, 2009.
    [19] RAVISHANKAR R, KIRSCHHOCKC, SCHOEMANB J, VANOPPENP, GROBETP J, STORCK S, MAIER W F, MARTENS J A, SCHRYVER F C D, JACOBS P A. Physicochemical characterization of silicalite-1 nanophase material[J]. J Phys Chem B, 1998, 102:2633-2639. doi: 10.1021/jp973147u
    [20] 潘文雅, 黄亮, 秦枫, 庄岩, 李雪梅, 马建学, 沈伟, 徐华龙.甘油脱水合成丙烯醛ZSM-5催化剂的孔结构和酸性调控[J].物理化学学报, 2015, 31(5):965-972. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201505021

    PAN Wen-ya, HUANG Liang, QIN Feng, ZHUANG Yan, LI Xue-mei, MA Jian-xue, SHEN Wei, XU Hua-long. Regulation of pore structure and acidity of a ZSM-5 catalyst for dehydration of glycerol to Acrolein[J]. Acta Phys-Chim Sin, 2015, 31(5):965-972. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201505021
    [21] GROEN J C, ZHUW D, BROUWER S, HUYNINK S J, KAPTEIJIN F, MOULIJN J A, PEREZ-RAMIREZ J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. J Am Chem Soc, 2007, 129(2):355-360. doi: 10.1021/ja065737o
    [22] KLINOWSKI J. Solid-state NMR studies of molecular sieve catalysts[J]. Chem Rev, 1991, 91:1459-1479. doi: 10.1021/cr00007a010
    [23] XU T, ZHANG Q H, SONG H, WANG Y. Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides[J]. J Catal, 2012, 295:232-241. doi: 10.1016/j.jcat.2012.08.014
    [24] PONCELET G, DUBRU M L. An infrared study of surface acidity of germanic near-faujasite zeolite by pyridine adsorption[J]. J Catal, 1978, 52:321-331. doi: 10.1016/0021-9517(78)90146-X
    [25] ANDRES G T, AGUSTIN M. Direct synthesis of DME from syngas on hybrid Cu-Zn-Al/ZSM-5 catalysts:New insights into the role of zeolite acidity[J]. Appl Catal A:Gen, 2012, 411-412:170-179. doi: 10.1016/j.apcata.2011.10.036
    [26] DING X, GENG S, LI C Y, YANG C H, WANG G H. Effect of acid density of HZSM-5 on the oligomerization of ethylene in FCC dry gas[J]. J Nat Gas Chem, 2009, 18:156-160. doi: 10.1016/S1003-9953(08)60100-0
    [27] CHESTER A W, DEROUANE E G. Zeolites Characterization and Catalysis:A Tutorial[M]. Springer-Verlag New York Inc:New York, 2009:358-365.
    [28] LIETZ G, SCHNABEL K H, PEUKER C. GROSS T, STOREK W, VOLTER J. Modifications of H-ZSM-5 Catalysts by NaOH Treatment[J]. J Catal, 1994, 148:562-568. doi: 10.1006/jcat.1994.1242
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  39
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-25
  • 修回日期:  2019-08-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-10-10

目录

    /

    返回文章
    返回