留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A comparison of MoS2 catalysts hydrothermally synthesized from different sulfur precursors in their morphology and hydrodeoxygenation activity

LIU Yan WU Kui GUO Xuan-lin WANG Wei-yan YANG Yun-quan

刘艳, 仵奎, 郭宣霖, 王威燕, 杨运泉. 不同硫源水热合成的MoS2催化剂的形貌和加氢脱氧活性比较研究[J]. 燃料化学学报(中英文), 2018, 46(5): 535-542.
引用本文: 刘艳, 仵奎, 郭宣霖, 王威燕, 杨运泉. 不同硫源水热合成的MoS2催化剂的形貌和加氢脱氧活性比较研究[J]. 燃料化学学报(中英文), 2018, 46(5): 535-542.
LIU Yan, WU Kui, GUO Xuan-lin, WANG Wei-yan, YANG Yun-quan. A comparison of MoS2 catalysts hydrothermally synthesized from different sulfur precursors in their morphology and hydrodeoxygenation activity[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 535-542.
Citation: LIU Yan, WU Kui, GUO Xuan-lin, WANG Wei-yan, YANG Yun-quan. A comparison of MoS2 catalysts hydrothermally synthesized from different sulfur precursors in their morphology and hydrodeoxygenation activity[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 535-542.

不同硫源水热合成的MoS2催化剂的形貌和加氢脱氧活性比较研究

基金项目: 

the National Natural Science Foundation of China 21776236

Natural Science Foundation of Hunan Province 2018JJ2384

Scientific Research Foundation of Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material of Huaihua University HGY201709

the Key Laboratory of Rare Earth Optoelectronic Materials and Devices HX150302

详细信息
  • 中图分类号: O643

A comparison of MoS2 catalysts hydrothermally synthesized from different sulfur precursors in their morphology and hydrodeoxygenation activity

Funds: 

the National Natural Science Foundation of China 21776236

Natural Science Foundation of Hunan Province 2018JJ2384

Scientific Research Foundation of Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material of Huaihua University HGY201709

the Key Laboratory of Rare Earth Optoelectronic Materials and Devices HX150302

More Information
  • 摘要: 分别采用硫脲、L-胱氨酸和硫磺为硫源水热合成了三种MoS2催化剂,对其结构和形貌特征进行了表征,并以对甲酚为探针化合物,比较研究了三种MoS2的加氢脱氧(HDO)催化活性。结果表明,硫源对MoS2晶体结构的影响不大,但对其形貌和比表面积影响较大。与商业MoS2相比,所制备的MoS2催化剂都表现出更高的HDO活性;其中,以硫脲为原料合成的MoS2具有较高的比表面积和花状结构,其催化活性最高,在300℃下进行对甲酚的HDO反应,脱氧度可达99.3%。
  • Figure  1  XRD patterns of MoS2 catalysts synthesized by using different sulfur precursors (Mo-S-T, Mo-S-L and Mo-S-S are from thiourea, L-cystine and sulfur powder, respectively)

    Figure  2  SEM images of Mo-S-L(a), Mo-S-S(b), Mo-S-T(c) and Mo-S-C(d)

    Figure  3  HRTEM images of Mo-S-L(a), Mo-S-S(b), Mo-S-T(c) and Mo-S-C(d)

    Figure  4  HDO of p-cresol over (a) Mo-S-C, (b) Mo-S-L, (c) Mo-S-S and (d) Mo-S-T

    Figure  5  Reaction routes for the HDO of p-cresol over MoS2

    Figure  6  Kinetic relations (ln(1-x) vs. t) for the HDO of p-cresol over Mo-S-C, Mo-S-L, Mo-S-S and Mo-S-T at 275 ℃

    Table  1  Reaction results for HDO of p-cresol on MoS2 catalysts at 275 and 300 ℃ for 8 h

    Catalyst p-cresol conversion x/% Product distribution wm/% D.D./%
    4-methylcyclohexene methylcyclohexane toluene
    275 ℃
    Mo-S-C 8.8 7.1 3.1 89.9 7.6
    Mo-S-T 87.4 5.5 26.1 68.4 85.8
    Mo-S-L 84.4 4.4 25.5 70.2 82.5
    Mo-S-S 70.3 5.9 20.2 73.9 67.2
    300 ℃
    Mo-S-C 29.1 6.5 7.9 85.6 26.0
    Mo-S-T 99.4 4.3 16.1 79.7 99.3
    Mo-S-L 95.2 3.9 17.5 78.7 94.4
    Mo-S-S 90.1 4.4 13.5 82.2 88.7
    下载: 导出CSV
  • [1] LIU Z, GUAN D B, WEI W, DAVIS S J, CIAIS P, BAI J, PENG S S, ZHANG Q, HUBACEK K, MARLAND G, ANDRES R J, CRAWFORD-BROWN D, LIN J T, ZHAO H Y, HONG C P, BODEN T A, FENG K S, PETERS G P, XI F M, LIU J G, LI Y, ZHAO Y, ZENG N, HE K B. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565):335-338. doi: 10.1038/nature14677
    [2] LI C Z, ZHAO X C, WANG A Q, HUBER G W, ZHANG T. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chem Rev, 2015, 115(21):11559-11624. doi: 10.1021/acs.chemrev.5b00155
    [3] SAIDI M, SAMIMI F, KARIMIPOURFARD D, NIMMANWUDIPONG T, GATES B C, RAHIMPOUR M R. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy Environ Sci, 2014, 7(1):103-129. doi: 10.1039/C3EE43081B
    [4] PATEL M, KUMAR A. Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil:A review[J]. Renewable Sustainable Energy Rev, 2016, 58:1293-1307. doi: 10.1016/j.rser.2015.12.146
    [5] GRILC M, LIKOZAR B, LEVEC J. Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts[J]. Appl Catal B:Environ, 2014, 150-151:275-287. doi: 10.1016/j.apcatb.2013.12.030
    [6] SCHIMMING S M, LAMONT O D, KÖNIG M, ROGERS A K, D'AMICO A D, YUNG M M, SIEVERS C. Hydrodeoxygenation of guaiacol over ceria-zirconia catalysts[J]. ChemSusChem, 2015, 8(12):2073-2083. doi: 10.1002/cssc.201500317
    [7] LUSKA K L, MIGOWSKI P, EL SAYED S, LEITNER W. Synergistic interaction within bifunctional ruthenium Nanoparticle/SILP catalysts for the selective hydrodeoxygenation of phenols[J]. Angew Chem Int Ed, 2015, 54(52):15750-15755. doi: 10.1002/anie.201508513
    [8] WANG G H, CAO Z W, GU D, PFÄNDER N, SWERTZ A C, SPLIETHOFF B, BONGARD H-J, WEIDENTHALER C, SCHMIDT W, RINALDI R, SCHVTH F. Nitrogen-doped ordered mesoporous carbon supported bimetallic PtCo nanoparticles for upgrading of biophenolics[J]. Angew Chem Int Ed, 2016, 55(31):8850-8855. doi: 10.1002/anie.201511558
    [9] SULLIVAN M M, CHEN C J, BHAN A. Catalytic deoxygenation on transition metal carbide catalysts[J]. Catal Sci Technol, 2016, 6(3):602-616. doi: 10.1039/C5CY01665G
    [10] WANG W Y, LIU P L, WU K, TAN S, LI W S, YANG Y Q. Preparation of hydrophobic reduced graphene oxide supported Ni-B-P-O and Co-B-P-O catalysts and their high hydrodeoxygenation activities[J]. Green Chem, 2016, 18(4):984-988. doi: 10.1039/C5GC02073E
    [11] GRILC M, VERYASOV G, LIKOZAR B, JESIH A, LEVEC J. Hydrodeoxygenation of solvolysed lignocellulosic biomass by unsupported MoS2, MoO2, Mo2C and WS2 catalysts[J]. Appl Catal B:Environ, 2015, 163(0):467-477. doi: 10.1007/s11705-017-1655-x
    [12] YANG Y Q, TYE C T, SMITH K J. Influence of MoS2 catalyst morphology on the hydrodeoxygenation of phenols[J]. Catal Commun, 2008, 9(6):1364-1368. doi: 10.1016/j.catcom.2007.11.035
    [13] RUIZ P E, FREDERICK B G, DE SISTO W J, AUSTIN R N, RADOVIC L R, LEIVA K, GARCÍA R, ESCALONA N, WHEELER M C. Guaiacol hydrodeoxygenation on MoS2 catalysts:Influence of activated carbon supports[J]. Catal Commun, 2012, 27:44-48. doi: 10.1016/j.catcom.2012.06.021
    [14] YOOSUK B, TUMNANTONG D, PRASASSARAKICH P. Unsupported MoS2 and CoMoS2 catalysts for hydrodeoxygenation of phenol[J]. Chem Eng Sci, 2012, 79:1-7. doi: 10.1016/j.ces.2012.05.020
    [15] VERYASOV G, GRILC M, LIKOZAR B, JESIH A. Hydrodeoxygenation of liquefied biomass on urchin-like MoS2[J]. Catal Commun, 2014, 46:183-186. doi: 10.1016/j.catcom.2013.12.011
    [16] ITTHIBENCHAPONG V, RATANATAWANATE C, OURA M, FAUNGNAWAKIJ K. A facile and low-cost synthesis of MoS2 for hydrodeoxygenation of phenol[J]. Catal Commun, 2015, 68:31-35. doi: 10.1016/j.catcom.2015.04.024
    [17] LIU G L, MA H L, TEIXEIRA I, SUN Z Y, XIA Q N, HONG X L, TSANG S, CHI E. Hydrazine-assisted liquid exfoliation of MoS2 for catalytic hydrodeoxygenation of 4-methylphenol[J]. Chem Eur J, 2016, 22(9):2910-2914. doi: 10.1002/chem.201504009
    [18] AMAYA S L, ALONSO-N ÚÑEZ G, ZEPEDA T A, FUENTES S, ECHAVARRÍA A. Effect of the divalent metal and the activation temperature of NiMoW and CoMoW on the dibenzothiophene hydrodesulfurization reaction[J]. Appl Catal B:Environ, 2014, 148-149:221-230. doi: 10.1016/j.apcatb.2013.10.057
    [19] WANG C L, WU Z Z, TANG C Y, LI L H, WANG D Z. The effect of nickel content on the hydrodeoxygenation of 4-methylphenol over unsupported NiMoW sulfide catalysts[J]. Catal Commun, 2013, 32(0):76-80. https://www.sciencedirect.com/science/article/pii/S1566736712004578
    [20] ZHANG H P, LIN H F, ZHENG Y, HU Y F, MACLENNAN A. The catalytic activity and chemical structure of nano MoS2 synthesized in a controlled environment[J]. React Chem Eng, 2016, 1(2):165-175. doi: 10.1039/C5RE00046G
    [21] CHEN G, WANG S P, YI R, TAN L F, LI H B, ZHOU M, YAN L T, JIANG Y B, TAN S, WANG D H, DENG S G, MENG X W, LUO H M. Facile synthesis of hierarchical MoS2-carbon microspheres as a robust anode for lithium ion batteries[J]. J Mater Chem A, 2016, 4(24):9653-9660. doi: 10.1039/C6TA03310E
    [22] YI Y J, ZHANG B S, JIN X, WANG L, WILLIAMS C T, XIONG G, SU D S, LIANG C H. Unsupported NiMoW sulfide catalysts for hydrodesulfurization of dibenzothiophene by thermal decomposition of thiosalts[J]. J Mol Catal A:Chem, 2011, 351(0):120-127.
    [23] LIU H, SU X, DUAN C Y, DONG X N, ZHU Z F. A novel hydrogen peroxide biosensor based on immobilized hemoglobin in 3D flower-like MoS2 microspheres structure[J]. Mater Lett, 2014, 122(0):182-185. https://www.sciencedirect.com/science/article/pii/S0925400516304233
    [24] PANDEY K, YADAV P, MUKHOPADHYAY I. Electrochemical and electronic properties of flower-like MoS2 nanostructures in aqueous and ionic liquid media[J]. RSC Adv, 2015, 5(71):57943-57949. doi: 10.1039/C5RA09282E
    [25] WU K, WANG W Y, TAN S, ZHU G H, TAN L, YANG Y Q. Microwave-assisted hydrothermal synthesis of amorphous MoS2 catalysts and their activities in the hydrodeoxygenation of p-cresol[J]. RSC Adv, 2016, 6(84):80641-80648. doi: 10.1039/C6RA19007C
    [26] LIU Y, ZHOU X L, DING T, WANG C D, YANG Q. 3D architecture constructed via the confined growth of MoS2 nanosheets in nanoporous carbon derived from metal-organic frameworks for efficient hydrogen production[J]. Nanoscale, 2015, 7(43):18004-18009. doi: 10.1039/C5NR03810C
    [27] LAI W K, CHEN Z, ZHU J P, YANG L F, ZHENG J B, YI X D, FANG W P. A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts[J]. Nanoscale, 2016, 8(6):3823-3833. doi: 10.1039/C5NR08841K
    [28] WHIFFEN V M L, SMITH K J. Hydrodeoxygenation of 4-Methylphenol over Unsupported MoP, MoS2, and MoOx Catalysts[J]. Energy Fuels, 2010, 24(9):4728-4737. doi: 10.1021/ef901270h
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  18
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-06
  • 修回日期:  2018-03-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-05-10

目录

    /

    返回文章
    返回