留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮掺杂介孔炭负载FeCu双金属催化剂及其CO加氢性能研究

李志文 陈从标 王俊刚 林明桂 侯博 贾丽涛 李德宝

李志文, 陈从标, 王俊刚, 林明桂, 侯博, 贾丽涛, 李德宝. 氮掺杂介孔炭负载FeCu双金属催化剂及其CO加氢性能研究[J]. 燃料化学学报(中英文), 2019, 47(6): 709-717.
引用本文: 李志文, 陈从标, 王俊刚, 林明桂, 侯博, 贾丽涛, 李德宝. 氮掺杂介孔炭负载FeCu双金属催化剂及其CO加氢性能研究[J]. 燃料化学学报(中英文), 2019, 47(6): 709-717.
LI Zhi-wen, CHEN Cong-biao, WANG Jun-gang, LIN Ming-gui, HOU Bo, JIA Li-tao, LI De-bao. Nitrogen-doped mesoporous carbon supported FeCu bimetallic catalyst and its CO hydrogenation performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 709-717.
Citation: LI Zhi-wen, CHEN Cong-biao, WANG Jun-gang, LIN Ming-gui, HOU Bo, JIA Li-tao, LI De-bao. Nitrogen-doped mesoporous carbon supported FeCu bimetallic catalyst and its CO hydrogenation performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 709-717.

氮掺杂介孔炭负载FeCu双金属催化剂及其CO加氢性能研究

基金项目: 

山西省应用基础研究项目 201601D021044

中国科学院战略性先导科技专项 XDA21020202

详细信息
  • 中图分类号: O643

Nitrogen-doped mesoporous carbon supported FeCu bimetallic catalyst and its CO hydrogenation performance

Funds: 

Basic Applied Research Project of Shanxi 201601D021044

Strategic Priority Research Program of the Chinese Academy of Sciences XDA21020202

More Information
  • 摘要: 利用氮掺杂介孔炭负载FeCu双金属,改变Fe/Cu组成,考察催化剂结构性质特征及其CO加氢反应性能。结果表明,Fe、Cu与N相互作用存在差异,Cu-N相互作用较强,并直接促进了Cu的分散。在较高的金属负载量(45.0%-50.0%,质量分数)下,Cu仍保持了与N一致的均匀分布特征,催化剂表面Fe/Cu组成也因为Fe、Cu分布特征差异而小于体相,这与常见Fe-Cu体系明显不同。在所用预处理条件(300℃的H2气氛)下,Fe未被完全还原,H主要与Fe-O作用,以Fe-O-H形式存在,而Cu-N作用较强,金属Cu与H作用较弱,使得催化剂表面活性氢碳比降低,导致C5+选择性随Fe/Cu比值的减小逐渐增加。与此同时,载体向负载金属的电子偏移能力也随着Fe/Cu比值的减小逐渐增强,促使催化剂表面碱性随Cu含量的增加逐渐增强,最终导致C5+选择性、醇选择性进一步增加。
  • 图  1  载体和催化剂的N2吸附-脱附等温曲线

    Figure  1  Nitrogen adsorption isotherms of NDMC and FexCuy/NDMC

    图  2  载体和催化剂的XRD谱图

    Figure  2  XRD patterns of NDMC and FexCuy/NDMC

    图  3  Fe5Cu5/NDMC催化剂的TEM照片(a)、STEM-HADDF暗场像(b)及EDS Mapping元素分布((c)-(f))

    Figure  3  TEM images (a), STEM-HADDF (b) and EDS Mapping ((c)-(f)) of Fe5Cu5/NDMC

    图  4  载体和催化剂的拉曼光谱谱图

    Figure  4  Raman spectra of NDMC and FeCu/NDMC

    图  5  载体和催化剂的XPS谱图

    Figure  5  Fe 2p (a), Cu 2p (b), Cu 2p3/2 (c) and N 1s (d) spectra of NDMC and FexCuy/NDMC

    图  6  催化剂的H2-TPR谱图

    Figure  6  H2-TPR profiles of FexCuy/NDMC

    图  7  催化剂的H2-TPD谱图

    Figure  7  H2-TPD profiles of FexCuy/NDMC

    图  8  催化剂的CO-TPD谱图

    Figure  8  CO-TPD profiles of FexCuy/NDMC

    图  9  载体和催化剂的CO2-TPD谱图

    Figure  9  CO2-TPD profiles of NDMC and FexCuy/NDMC

    表  1  氮掺杂介孔炭及其负载FeCu双金属催化剂的织构信息

    Table  1  Textural parameters of NDMC and FeCu/NDMC

    Sample Specific surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Average pore size d/nm
    NDMC 769.4 0.799 6.5
    Fe/NDMC 256.2 0.352 5.8
    Fe8Cu2/NDMC 258.4 0.346 5.8
    Fe6Cu4/NDMC 268.7 0.383 5.9
    Fe5Cu5/NDMC 254.5 0.359 5.8
    下载: 导出CSV

    表  2  氮掺杂介孔炭及其负载FeCu双金属催化剂的元素含量

    Table  2  Element contents of NDMC and FeCu/NDMC

    Sample Metal loading w/%a Surface atom ratio/%b Fe/Cu (atomic ratio) Bulk atom ratio of Fe/Cua
    N C O Fe Cu
    NDMC - 20.53 73.21 6.26 - - - -
    Fe8Cu2/NDMC 45.92 12.45 52.37 23.46 7.59 4.13 1.84 3.83
    Fe6Cu4/NDMC 46.28 13.28 52.63 23.16 5.80 5.13 1.13 1.45
    Fe5Cu5/NDMC 46.39 11.65 51.05 26.50 5.26 5.54 0.95 0.97
    a: obtained by ICP measurement;
    b: obtained by XPS measurement
    下载: 导出CSV

    表  3  氮掺杂介孔炭及其负载的FeCu双金属催化剂的组成

    Table  3  Surface composition of NDMC and FeCu/NDMC

    Catalyst Binding energy E/eV CuA2+/ (CuA2++CuB2+)a
    pyridinic N pyrrolic N graphitic N Fe 2p3/2 Fe 2p1/2 Cu 2p3/2 Cu 2p1/2
    NDMC 398.3 400.1 402.1 - - - - -
    Fe8Cu2/NDMC 398.5 400.3 402.2 710.4 724.3 933.6 952.5 0.63
    Fe6Cu4/NDMC 398.9 400.5 402.2 710.4 723.7 933.9 953.7 0.71
    Fe5Cu5/NDMC 399.2 400.7 402.1 710.6 723.5 934.4 954.0 0.69
    a: area ratio of CuB2+/(CuA2++CuB2+)
    下载: 导出CSV

    表  4  不同Fe/Cu组成的FexCuy/NDMC催化剂的反应性能

    Table  4  Catalytic performance of FexCuy/NDMC in CO hydrogenation

    Catalyst Temperature
    t/℃
    CO conversion
    x/%
    Selectivity in hydrocarbon smol/% Selectivity sC/%
    CH4 C2-4 C5+ HCs ROH CO2
    Fe8Cu2/NDMC 240 22.8 19.1 45.3 35.7 78.8 9.7 11.5
    250 37.7 18.3 51.6 30.0 77.0 9.4 13.7
    Fe6Cu4/NDMC 240 19.4 20.5 24.8 54.7 75.3 12.0 12.7
    250 32.8 19.4 30.5 50.1 71.9 10.8 17.3
    Fe5Cu5/NDMC 240 18.7 19.3 22.5 58.2 75.4 13.9 10.7
    250 25.2 20.4 26.2 53.4 74.4 10.8 14.8
    reaction conditions: p=3.0 MPa, H2/CO=2, GHSV=3000 mL/(gcat·h), the values were obtained at the steady-state after 48 h on stream
    下载: 导出CSV
  • [1] LIAND C D, LI Z J, DAI S. Mesoporous carbon materials:synthesis and modification[J]. Angew Chem Int Ed Eng, 2008, 47(20):3696-3717. doi: 10.1002/(ISSN)1521-3773
    [2] FU T J, LI Z H. Review of recent development in Co-based catalysts supported on carbon materials for Fischer-Tropsch synthesis[J]. Chem Eng Sci, 2015, 135:3-20. doi: 10.1016/j.ces.2015.03.007
    [3] XIONG H F, JEWELL L L, COVILLE N J. Shaped carbons as supports for the catalytic conversion of syngas to clean fuels[J]. ACS Catal, 2015, 5(4):2640-2658. doi: 10.1021/acscatal.5b00090
    [4] 刘云朋, 周洁, 李中坚, 雷乐成.氮掺杂有序介孔碳的研究进展[J].现代化工, 2014, 34(6):19-22. http://d.old.wanfangdata.com.cn/Periodical/xdhg201406006

    LIU Yun-peng, ZHOU Jie, LI Zhong-jian, LEI Le-cheng. Research progress of N-doped ordered mesoporous carbon[J]. Mod Chem Ind, 2014, 34(6):19-22. http://d.old.wanfangdata.com.cn/Periodical/xdhg201406006
    [5] 李烁, 姚楠.掺氮碳基材料在费托合成反应中的应用[J].化工进展, 2015, 34(11):3933-3937. http://d.old.wanfangdata.com.cn/Periodical/hgjz201511020

    LI Suo, YAO Nan. Application of nitrogen-doped carbon materials in Fischer-Tropsch synthesis reaction[J]. Chem Ind Eng Prog, 2015, 34(11):3933-3937. http://d.old.wanfangdata.com.cn/Periodical/hgjz201511020
    [6] SANKAR M, DIMITRATOS N, MIEDZIAK P J, WELLS P P, KIELY C J, HUTCHING G J. Designing bimetallic catalysts for a green and sustainable future[J]. Chem Soc Rev, 2012, 41(24):8099-8139. doi: 10.1039/c2cs35296f
    [7] WANG G H, CAO Z W, GU D, PFANDER N, SWERTZ A C, SPLIETHOFF B, BONGARD H J, WEIDENTHALER C, SCHMIDT W, RINALDI R, SCHUTH F. Nitrogen-doped ordered mesoporous carbon supported bimetallic PtCo nanoparticles for upgrading of biophenolics[J]. Angew Chem Int Ed, 2016, 55(31):8850-8855. doi: 10.1002/anie.201511558
    [8] XIAO K, QI X Z, BAO Z H, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H. CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas:A comparative study[J]. Catal Sci Technol, 2013, 3(6):1591-1602. doi: 10.1039/c3cy00063j
    [9] XIAO K, BAO Z H, QI X Z, WANG X X, ZHONG L S, LIN M G, FANG K G. Unsupported CuFe bimetallic nanoparticles for higher alcohol synthesis via syngas[J]. Catal Commun, 2013, 40:154-157. doi: 10.1016/j.catcom.2013.06.024
    [10] KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev, 2007, 107(5):1692-1744. doi: 10.1021/cr050972v
    [11] LI S Z, LI A W, KRISHNAMOORTHY S, IGLESIA E. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catal Lett, 2001, 77(4):197-205. doi: 10.1023/A:1013284217689
    [12] GAO W, ZHAO Y F, LIU J M, HUANG Q W, HE S, LI C M, ZHAO J W, WEI M. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catal Sci Technol, 2013, 3(5):1324-1332. doi: 10.1039/c3cy00025g
    [13] XIAO K, BAO Z H, QI X Z, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H. Structural evolution of CuFe bimetallic nanoparticles for higher alcohol synthesis[J]. J Mol Catal A:Chem, 2013, 378(11):319-325. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4dd29ff2a1b453d66d1921ffbf802631
    [14] SHI X P, YU H B, GAO S, LI X Y, FANG H H, LI R J, LI Y Y, ZHANG L J, LIANG X L, YUAN Y Z. Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu-Fe catalyst for the synthesis of higher alcohols from syngas[J]. Fuel, 2017, 210:241-248. doi: 10.1016/j.fuel.2017.08.064
    [15] KIATPHUENGPORN S, CHAREONPANICH M, LIMTRAKUL J. Effect of unimodal and bimodal MCM-41 mesoporous silica supports on activity of Fe-Cu catalysts for CO2 hydrogenation[J]. Chem Eng J, 2014, 240:527-533. doi: 10.1016/j.cej.2013.10.090
    [16] WANG S, ZHAO Q, WEI H, WANG J Q, CHO M, CHO H S, TERASAKI O, WAN Y. Aggregation-free gold nanoparticles in ordered mesoporous carbons:Toward highly active and stable heterogeneous catalysts[J]. J Am Chem Soc, 2013, 135(32):11849-11860. doi: 10.1021/ja403822d
    [17] LIU G G, CHEN Q J, OYUNKHAND E, DING S Y, YAMANE N, YANG G H, YONEYAMA Y, TSUBAKI N. Nitrogen-rich mesoporous carbon supported iron catalyst with superior activity for Fischer-Tropsch synthesis[J]. Carbon, 2018, 130:304-314. doi: 10.1016/j.carbon.2018.01.015
    [18] XIONG H F, MOYO M, RAYNER M, JEWELL L L, BILLING D G, COVILLE N. Autoreduction and catalytic performance of a cobalt Fischer-Tropsch synthesis catalyst supported on nitrogen-doped carbon spheres[J]. ChemCatChem, 2010, 2(5):514-518. doi: 10.1002/cctc.200900309
    [19] DING Y Q, YANG J H, YANG G Z, LI P. Fabrication of ordered mesoporous carbons anchored with MnO nanoparticles through dual-templating approach for supercapacitors[J]. Ceram Int, 2015, 41(8):9980-9987. doi: 10.1016/j.ceramint.2015.04.078
    [20] LU J Z, YANG L J, XU B L, WU Q, ZHANG D, YUAN S J, ZHAI Y P, WANG X Z, FAN Y N, HU Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catal, 2014, 4(2):613-621. doi: 10.1021/cs400931z
    [21] CHE R C, LIANG C Y, SHI H L, ZHOU X G, YANG X N. Electron energy-loss spectroscopy characterization and microwave absorption of iron-filled carbon-nitrogen nanotubes[J]. Nanotechnol, 2007, 18(35):355705. doi: 10.1088/0957-4484/18/35/355705
    [22] KIM S J, PARK Y J, RA E J, KIM K K, AN K H, LEE Y H, CHOI J Y, PARK C H, DOO S G, PARK M H, YANG C W. Defect-induced loading of Pt nanoparticles on carbon nanotubes[J]. Appl Phy Lett, 2007, 90(2):169. http://cn.bing.com/academic/profile?id=d27ae3c591d5f6db681c7e7d91661e15&encoded=0&v=paper_preview&mkt=zh-cn
    [23] BARTOLOME L, IMRAN M, LEE K G, SANGALANG A, AHN J K, KIM D H. Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET[J]. Green Chem, 2014, 16(1):279-286. doi: 10.1039/C3GC41834K
    [24] LI F, ZHANG L H, EVANS D G, DUAN X. Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides[J]. Colloids Surfaces A, 2004, 244(1):169-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ee0110808fbd57b633b0f8aa7605439
    [25] LUK H T, MONDELLI C, MITCHELL S, SIOL S, STEWART J A, FERRE D C, PEREZ-RAMIREZ J. Role of carbonaceous supports and potassium promoter on higher alcohols synthesis over copper-iron catalysts[J]. ACS Catal, 2018, 8(10):9604-9618. doi: 10.1021/acscatal.8b02714
    [26] SUN F G, LIU J, CHEN H C, ZHANG Z X, QIAO W M, LONG D H, LING L C. Nitrogen-rich mesoporous carbons:Highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S[J]. ACS Catal, 2013, 3(5):862-870. doi: 10.1021/cs300791j
    [27] BAGUS P S, ILTON E, NELIN C J. The interpretation of XPS spectra:Insights into materials properties[J]. Surf Sci Rep, 2013, 68(2):273-304. doi: 10.1016/j.surfrep.2013.03.001
    [28] YANG X M, WEI Y, SU Y L, ZHOU L P. Characterization of fused Fe-Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR[J]. Fuel Process Technol, 2010, 91(9):1168-1173. doi: 10.1016/j.fuproc.2010.03.032
    [29] ZHANG C H, ZHAO G Y, LIU K K, YANG Y, XIANG H W, LI Y W. Adsorption and reaction of CO and hydrogen on iron-based Fischer-Tropsch synthesis catalysts[J]. J Mol Catal A:Chem, 2010, 328(1/2):35-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ffab8b7babce08c8ff4afb536239815a
    [30] BLIEM R, VAN DER HOEVEN J, ZAVODNY A, GAMBA O, PAVELEC J, DE JONGH P E, SCHMID M, DIEBOLD U, PARKINSON G S. An atomic-scale view of CO and H2 oxidation on a Pt/Fe3O4model catalyst[J]. Angew Chem Int Ed, 2015, 127(47):14205-14208. doi: 10.1002/ange.201507368
    [31] AL-DOSSARY M, FIERRO J L G, SPIVEY J J. Cu-promoted Fe2O3/MgO-based Fischer-Tropsch catalysts of biomass-derived syngas[J]. Ind Eng Chem Res, 2015, 54(3):911-921. doi: 10.1021/ie504473a
    [32] MAO W Y, MA H F, ZHANG H T, SUN Q W, YING W Y. Influence of copper loading on the surface species and catalytic properties in the formation of oxygenated by-products during FTS over FeCuKLa/SiO2catalysts[J]. Catal Lett, 2012, 142(9):1098-1106. doi: 10.1007/s10562-012-0865-6
    [33] KANG S H, KOO H M, KIM A R, LEE D H, RYU J H, YOO Y D, BAE J W. Correlation of the amount of carbonaceous species with catalytic performance on iron-based Fischer-Tropsch catalysts[J]. Fuel Process Technol, 2013, 109:141-149. doi: 10.1016/j.fuproc.2012.09.052
    [34] ZHANG C H, YANG Y, TENG B T, LI T Z, ZHENG H Y, XIANG H W, LI Y W. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006, 237(2):405-415. http://cn.bing.com/academic/profile?id=c65080a18786083e192f4d736240d190&encoded=0&v=paper_preview&mkt=zh-cn
    [35] CHONCO Z H, LODYA L, CLAEYS M, STEEN E V. Copper ferrites:A model for investigating the role of copper in the dynamic iron-based Fischer-Tropsch catalyst[J]. J Catal, 2013, 308:363-373. doi: 10.1016/j.jcat.2013.08.012
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  62
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-26
  • 修回日期:  2019-03-19
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-06-10

目录

    /

    返回文章
    返回