留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HZSM-5/SAPO-11负载Cr2O3催化转化LPG制低碳烯烃活性研究

王康洲 张建利 范素兵 马清祥 赵天生

王康洲, 张建利, 范素兵, 马清祥, 赵天生. HZSM-5/SAPO-11负载Cr2O3催化转化LPG制低碳烯烃活性研究[J]. 燃料化学学报(中英文), 2017, 45(11): 1376-1383.
引用本文: 王康洲, 张建利, 范素兵, 马清祥, 赵天生. HZSM-5/SAPO-11负载Cr2O3催化转化LPG制低碳烯烃活性研究[J]. 燃料化学学报(中英文), 2017, 45(11): 1376-1383.
WANG Kang-zhou, ZHANG Jian-li, FAN Su-bing, MA Qing-xiang, ZHAO Tian-sheng. Catalytic performance of SAPO-11/HZSM-5 composite supported Cr2O3 in the transformation of LPG to light olefins[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1376-1383.
Citation: WANG Kang-zhou, ZHANG Jian-li, FAN Su-bing, MA Qing-xiang, ZHAO Tian-sheng. Catalytic performance of SAPO-11/HZSM-5 composite supported Cr2O3 in the transformation of LPG to light olefins[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1376-1383.

HZSM-5/SAPO-11负载Cr2O3催化转化LPG制低碳烯烃活性研究

基金项目: 

国家自然科学基金 21563024

宁夏大学研究生创新项目 GIP2017024

详细信息
  • 中图分类号: TQ426.64

Catalytic performance of SAPO-11/HZSM-5 composite supported Cr2O3 in the transformation of LPG to light olefins

Funds: 

the National Natural Science Foundation of China 21563024

Graduate Innovation Program of Ningxia University GIP2017024

More Information
  • 摘要: SAPO-11晶化液中预置HZSM-5合成了HZSM-5(核)/SAPO-11(壳)复合分子筛。以复合分子筛为载体负载10% Cr2O3,研究了其孔分布、酸性质及其对液化石油气(LPG)转化制乙烯和丙烯反应的催化性能。结果表明,复合分子筛由HZSM-5表面包覆不同厚度的SAPO-11微晶组成,随着晶化时间延长,复合分子筛壳层厚度增加。复合分子筛负载Cr2O3催化剂的介孔率先增加后降低;弱酸量先增加后降低,强酸强度增加,强酸量先降低后增加,强酸密度减小。复合分子筛载体在LPG选择转化反应中催化性能优于单个分子筛和机械混合分子筛,其中,晶化12 h合成样品负载Cr2O3用于LPG转化反应对原料总转化率和乙烯+丙烯选择性最高,分别为42.63%和65.89%,CH4和C5+选择性分别为6.32%和15.48%。通过控制晶化时间可调变壳层厚度、复合分子筛介孔率以及酸性质,改善产物分布。
  • 图  1  分子筛样品的XRD谱图

    Figure  1  XRD patterns of the molecular sieve samples

    (a): single molecular sieve supporting; (b): composite molecular sieve supporting

    图  2  合成分子筛的FT-IR谱图

    Figure  2  FT-IR spectra of synthesized molecular sieves

    图  3  合成分子筛样品的SEM和TEM照片

    Figure  3  SEM and TEM images of various synthesized molecular sieves

    SEM: (a): HZSM-5; (b): SAPO-11; (c): Z+S; (d): Z/S-12; TEM: (e): Z/S-12; (f): Z/S-24

    图  4  分子筛负载Cr2O3样品的NH3-TPD谱图

    Figure  4  NH3-TPD profiles of the molecular sieve supported Cr2O3

    图  5  LPG组分在不同催化剂上的转化率

    Figure  5  Conversion of LPG components over different catalysts

    图  6  原料总转化率随反应时间的变化

    Figure  6  Total feed conversion with the time on stream

    图  7  不同样品上LPG转化反应的产物分布

    Figure  7  Product distribution for the LPG transformation over different catalysts

    图  8  C2=+C3=选择性随反应时间的变化

    Figure  8  Selectivity to C2=+C3= with time on stream over various catalysts

    图  9  催化剂的热重曲线

    Figure  9  TG curves of the catalyst samples

    表  1  分子筛负载Cr2O3样品的孔参数

    Table  1  Pore parameters of the molecular sieve supported Cr2O3

    Supporter Ratio ABET/(m2·g-1) vpore /(cm3·g-1) dpore/nm Mesoporosity /%
    vmicro vmeso vtotal dmicro dmeso
    HZSM-5 - 334 0.146 0.081 0.227 0.556 2.204 35.7
    SAPO-11 - 225 0.102 0.075 0.177 0.566 5.194 42.4
    Z+S 1:3.0 215 0.092 0.078 0.170 0.568 2.124 45.9
    Z/S-6 1:1.8 208 0.089 0.087 0.176 0.542 2.151 49.4
    Z/S-12 1:2.0 167 0.071 0.085 0.156 0.526 2.138 54.5
    Z/S-24 1:2.3 167 0.072 0.085 0.157 0.525 2.151 54.1
    mesoporosity: vmeso / vtotal
    下载: 导出CSV

    表  2  分子筛负载Cr2O3样品的NH3-TPD酸量

    Table  2  NH3-TPD acid amounts of the molecular sieve supported Cr2O3

    Sample Temperature t/℃ Acid amount /(mmol·g-1) Strong acid density/(mmol·m-2)×105
    weak acid strong acid weak acid strong acid total
    HZSM-5 210 413 0.127 0.066 0.193 19.76
    SAPO-11 200 398 0.250 0.005 0.255 2.22
    Z+S 204 406 0.258 0.028 0.286 13.02
    Z/S-6 208 472 0.315 0.016 0.331 7.69
    Z/S-12 200 464 0.400 0.009 0.409 5.39
    Z/S-24 209 475 0.389 0.012 0.401 7.19
    下载: 导出CSV
  • [1] 金羽豪, 任文坡.甲醇制烯烃将成我国未来烯烃市场主流[J].中国石化, 2017, 1:31-33. http://www.cqvip.com/QK/98443X/201701/671480631.html

    JIN Yu-hao, REN Wen-po. Methanol to olefins will become the future olefins market mainstream of China[J]. Chin Pet Chem Ind, 2017, 1:31-33. http://www.cqvip.com/QK/98443X/201701/671480631.html
    [2] 丁郡瑜.中国煤制油产业现状与发展环境分析[J].国际石油经济, 2017, 25(4):45-49. http://d.wanfangdata.com.cn/Periodical/gjsyjj201704008

    DING Jun-yu. Status and development environment of China's CTL industry[J]. Int Pet Econ, 2017, 25(4):45-49. http://d.wanfangdata.com.cn/Periodical/gjsyjj201704008
    [3] 阿古达木, 孙勇, 张飞跃.神华宁煤甲醇制丙烯装置产物分布探讨[J].煤化工, 2013, 1:58-60. doi: 10.3969/j.issn.1005-9598.2013.01.017

    A-Gu-da-mu, SUN-Yong, ZHANG Fei-yue. Discussion on product distribution of methanol to propylene in shenhua ningxia coal[J]. Coal Chem Ind, 2013, 1:58-60. doi: 10.3969/j.issn.1005-9598.2013.01.017
    [4] 候庆贺, 杨靖华.液化石油气资源及其综合利用[J].当代化工, 2010, 39(3):287-289. http://d.wanfangdata.com.cn/Periodical/ddhg201003019

    HOU Qing-he, YANG Jing-hua. Liquefied petroleum gas resources and their comprehensive utilization[J]. Contemp Chem Ind, 2010, 39(3):287-289. http://d.wanfangdata.com.cn/Periodical/ddhg201003019
    [5] HAJHEIDARY M, GHASHGHAEE M, KARIMZADEH R. Olefins production from LPG via dehydrogenative cracking over three ZSM-5 catalysts[J]. J Sci Ind Res, 2013, 72:760-766. https://www.researchgate.net/publication/288213226_Olefins_production_from_LPG_via_dehydrogenative_cracking_over_three_ZSM-5_catalysts
    [6] 王久昌, 张国良, 郝代军.液化石油气综合利用技术进展[J].炼油技术与工程, 2009, 39(10):1-6. doi: 10.3969/j.issn.1002-106X.2009.10.001

    WANG Jiu-chang, ZHANG Guo-liang, HAO Dai-jun. Advances in comprehensive utilization of liquefied petroleum gas[J]. Refin Technol Eng, 2009, 39(10):1-6. doi: 10.3969/j.issn.1002-106X.2009.10.001
    [7] RAHIMI N, MORADI D, SHEIBAK M, MOOSAVI E, KARIMZADEH R. The influence of modification methods on the catalytic cracking of LPG over lanthanum and phosphorus modified HZSM-5 catalysts[J]. Microporous Mesoporous Mater, 2016, 234:215-223. doi: 10.1016/j.micromeso.2016.07.010
    [8] VAFI L, KARIMZADEH R. A novel method for enhancing the stability of ZSM-5 zeolites used for catalytic cracking of LPG:Catalyst modification by dealumination and subsequent silicon loading[J]. Chin J Catal, 2016, 37:628-635. doi: 10.1016/S1872-2067(15)61062-2
    [9] VAFI L, KARIMZADEH R. LPG catalytic cracking over the modified ZSM-5 by activated carbon and carbon nanotube templates:Synthesis, morphology and performance of catalysts[J]. J Nat Gas Sci Eng, 2016, 32:1-9. doi: 10.1016/j.jngse.2016.04.032
    [10] KUMAR S M, HAMMER N, RØNNING M, HOLMEN A, CHEN D, WALMSLEY J C, ØYE G. The nature of active chromium species in Cr-catalysts for dehydrogenation of propane:New insights by a comprehensive spectroscopic study[J]. J Catal, 2009, 261:116-128. doi: 10.1016/j.jcat.2008.11.014
    [11] ZHANG P Q, GUO X W, GUO H C, WANG X S. Study of the performance of modified nano-scale ZSM-5 zeolite on olefins reduction in FCC gasoline[J]. J Mol Catal A:Chem, 2007, 261:139-146. doi: 10.1016/j.molcata.2006.08.012
    [12] ZHAO G L, TENG J W, XIE Z K, JIN W Q, YANG W M, CHEN Q L, TANG Y. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene[J]. J Catal, 2007, 248:29-37. doi: 10.1016/j.jcat.2007.02.027
    [13] KUBO K, IIDA H, NAMBA S, IGARASHI A. Comparison of steaming stability of Cu-ZSM-5 with those of Ag-ZSM-5, P/H-ZSM-5, and H-ZSM-5 zeolites as naphtha cracking catalysts to produce light olefin at high temperatures[J]. Appl Catal A:Gen, 2015, 489:272-279. doi: 10.1016/j.apcata.2014.10.041
    [14] HOU X, QIU Y, ZHANG X, LIU G. Analysis of reaction pathways for n-pentane cracking over zeolites to produce light olefins[J]. Chem Eng J, 2017, 307:372-381. doi: 10.1016/j.cej.2016.08.047
    [15] 王翠, 张瑞珍, 邢普, 温少波, 赵玲玲, 郭端阳, 赵亮富.碱处理和Zn改性对HZSM-5催化LPG芳构化性能的影响[J].天然气化工(C1化学与化工), 2015, 40(6):13-17. http://d.wanfangdata.com.cn/Periodical/trqhg201506003

    WANG Cui, ZHANG Rui-zhen, XING Pu, WEN Shao-bo, ZHAO Ling-ling, GUO Duan-yang, ZHAO Liang-fu. Effect of alkali treatment and Zn modification on catalytic performance of HZSM-5 for LPG aromatization[J]. Nat Gas Chem Ind, 2015, 40(6):13-17. http://d.wanfangdata.com.cn/Periodical/trqhg201506003
    [16] CAEIRO G, CARVALHO R H, WANG X, LEMOS M A N D A, LEMOS F, GUISNET M, RIBEIRO R F, Activation of C2-C4 alkanes over acid and bifunctional zeolite catalysts[J]. J Mol Catal A:Chem, 2006, 255:131-158. doi: 10.1016/j.molcata.2006.03.068
    [17] ZHU Q, KONDO J N., SETOYAMA T, YAMAGUCHI M, DOMENC K, TATSUMI T. Activation of hydrocarbons on acidic zeolites:superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts[J]. Chem. Commun., 2008, 5164-5166. http://europepmc.org/abstract/MED/18956056
    [18] WUO W, GUO W, XIAO W, LUO M. Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5[J]. Chem Eng Sci, 2011, 66:4722-4732. doi: 10.1016/j.ces.2011.06.036
    [19] 詹金友, 张璐璐, 孙尧, 沈健.改性ZSM-5-SBA-15及甲苯甲醇烷基化性能研究[J].燃料化学学报, 2016, 44(4):489-494. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18818.shtml

    ZHAN Jin-you, ZHANG Lu-lu, SUN Yao, SHEN Jian. Modified ZSM-5-SBA-15 and its alkylation performance for toluene with methanol[J]. J Fuel Chem Technol, 2016, 44(4):489-494. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18818.shtml
    [20] FAN S, ZHOU J, LV J, LIU M, HUANG H, ZHANG J, ZHAO T S. Composite HZSM-5 with nanosheets for higher light olefin selectivity and longer lifetime in catalytic cracking mixed light hydrocarbons[J]. Chem Lett, 2015, 44:1697-1699. doi: 10.1246/cl.150816
    [21] KOOHSARYAN E, ANBIA M. Nanosized and hierarchical zeolites:A short review[J]. Chin J Catal, 2016, 37:447-467. doi: 10.1016/S1872-2067(15)61038-5
    [22] 吕江江, 黄星亮, 赵蕾蕾, 孙仁山, 胡龙旺, 龚艳.酸碱处理对ZSM-5分子筛物化性质和反应性能的影响[J].燃料化学学报, 2016, 44(6):732-737. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18852.shtml

    LV Jiang-jiang, HUANG Xing-liang, ZHAO Lei-lei, SUN Ren-shan, HU Long-wang, GONG Yan. Effects of acid-alkali treatment on properties and reactivity of ZSM-5 catalyst[J]. J Fuel Chem Technol, 2016, 44(6):732-737. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18852.shtml
    [23] ZHANG Q, LI C, XU S, SHAN H, YANG C. Synthesis of a ZSM-5(core)/SAPO-5(shell) composite and its application in FCC[J]. J Porous Mater, 2013, 20:171-176. doi: 10.1007/s10934-012-9586-x
    [24] ZHANG X, WANG J W, ZHONG J, LIU A S, GAO J K. Characterization and catalytic performance of SAPO-11/Hβ composite molecular sieve compared with the mechanical mixture[J]. Microporous Mesoporous Mater, 2008, 108:13-21. doi: 10.1016/j.micromeso.2007.03.022
    [25] 周志华, 鲁金明, 巫树峰, 周敬林, 王金渠.两步晶化法制备MCM-48/ZSM-5复合分子筛[J].无机材料学报, 2009, 24(2):325-329. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wgcl200902025&dbname=CJFD&dbcode=CJFQ

    ZHOU Zhi-hua, LU Jin-ming, WU Shu-feng, ZHOU Jing-lin, WANG Jin-qu. Synthesis of MCM-48/ZSM-5 composite molecular sieve by two-step crystallization[J]. J Inorg Mater, 2009, 24(2):325-329. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wgcl200902025&dbname=CJFD&dbcode=CJFQ
    [26] DUAN C, ZHANG X, ZHOU R, HUA Y, ZHANG L, CHEN J. Comparative studies of ethanol to propylene over HZSM-5/SAPO-34 catalysts prepared by hydrothermal synthesis and physical mixture[J]. Fuel Proc Technol, 2013, 108:31-40. doi: 10.1016/j.fuproc.2012.03.015
    [27] WU G, WU W, WANG X, ZAN W, WANG W J, LI C. Nanosized ZSM-5 zeolites:Seed-induced synthesis and the relation between the physicochemical properties and the catalytic performance in the alkylation of naphthalene[J]. Microporous Mesoporous Mater, 2013, 180:187-195. doi: 10.1016/j.micromeso.2012.11.011
    [28] JANSEN J C, GAAG F J, BEKKUM H. Identification of ZSM-type and other 5-ring containing zeolites by i.r. spectroscopy[J]. zeolites, 1984, 4:369-372. doi: 10.1016/0144-2449(84)90013-7
    [29] CHAE H J, SONG Y H, JEONG K E, KIM C U, JEONG S Y. Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction[J]. J Phys Chem Solids, 2010, 71:600-603. doi: 10.1016/j.jpcs.2009.12.046
    [30] YANG Y, SUN C, DU J M, YUE Y H, HUA W M, ZHANG C L, SHEN W, XU H L.The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction[J]. Catal Commun, 2012, 24:44-47. doi: 10.1016/j.catcom.2012.03.013
    [31] MULLER S, LIU Y, VISHNUVARTHAN M, SUN X Y, VEEN A C, HALLER G L, SANCHEZ M, LERCHER J A. Coke formation and deactivation pathways on HZSM-5 in the conversion of methanol to olefins[J]. Chem Eng J, 2015, 278:159-165. doi: 10.1016/j.cej.2014.11.026
    [32] NIEMINEN V, KUMAR N, HEIKKILA T, LAINE E, VILLEGAS J, SALMI T, MURZIN Y D. Isomerization of 1-butene over SAPO-11 catalysts synthesized by varying synthesis time and silica sources[J]. Appl Catal A:Gen, 2004, 259:227-234. doi: 10.1016/j.apcata.2003.09.038
    [33] NAKASAKA Y, NISHIMURA J I, TAGO T, MASUDA T. Deactivation mechanism of MFI-type zeolites by coke formation during n-hexane cracking[J]. J Catal, 2015, 278:159-165. http://www.sciencedirect.com/science/article/pii/S1385894714014697
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  39
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-30
  • 修回日期:  2017-08-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-11-10

目录

    /

    返回文章
    返回