留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO在Pd平板与Pd38团簇表面上的催化氧化机理研究

齐大彬 罗旭东 姚君 姚玉龙 芦晓军

齐大彬, 罗旭东, 姚君, 姚玉龙, 芦晓军. CO在Pd平板与Pd38团簇表面上的催化氧化机理研究[J]. 燃料化学学报(中英文), 2020, 48(4): 432-439.
引用本文: 齐大彬, 罗旭东, 姚君, 姚玉龙, 芦晓军. CO在Pd平板与Pd38团簇表面上的催化氧化机理研究[J]. 燃料化学学报(中英文), 2020, 48(4): 432-439.
QI Da-bin, LUO Xu-dong, YAO Jun, YAO Yu-long, LU Xiao-jun. Catalytic oxidation of CO on Pd38 cluster and Pd slab, a computational study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 432-439.
Citation: QI Da-bin, LUO Xu-dong, YAO Jun, YAO Yu-long, LU Xiao-jun. Catalytic oxidation of CO on Pd38 cluster and Pd slab, a computational study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 432-439.

CO在Pd平板与Pd38团簇表面上的催化氧化机理研究

基金项目: 

国家自然科学基金 51772139

详细信息
  • 中图分类号: O643.32

Catalytic oxidation of CO on Pd38 cluster and Pd slab, a computational study

Funds: 

National Natural Science Foundation of China 51772139

More Information
  • 摘要: 采用密度泛函理论(DFT)计算模拟Pd平板和Pd38团簇上的CO催化氧化过程,分析了CO在Pd催化剂表面上的氧化反应机理。结果表明,在Pd38团簇模型上CO催化氧化的决速步骤是O2的解离,反应能垒为0.65 eV,而在Pd平板模型上的决速步骤是CO的氧化,其反应能垒为0.87 eV。对比决速步骤的活化能发现,CO在Pd38团簇上的氧化反应更易进行,说明CO氧化更易在小颗粒催化剂表面上进行,即Pd催化剂的活性与活性组分颗粒大小相关,活性组分颗粒越小,暴露的活性位点越多,其催化活性也越高。
  • 图  1  两种Pd催化剂的模型

    Figure  1  Models of Pd catalysts

    (a): Pd slab model; (b): Pd38 cluster model

    图  2  CO与其反应中间物在Pd38团簇模型上吸附位置示意图(图中红球为O原子,灰球为C原子,蓝球为Pd原子)

    Figure  2  Adsorption configurations of all intermediates involved in CO oxidation reaction on the Pd38 cluster C, O, H and Pd atoms are shown as grey, red, white and blue balls, respectively

    图  3  CO与其反应中间物在Pd平板模型上吸附位置示意图(图中红球为O原子,灰球为C原子,蓝球为Pd原子)

    Figure  3  Adsorption configurations of all intermediates involved in CO oxidation reaction on the Pd slab C, O, H and Pd atoms are shown as grey, red, white and blue balls, respectively

    图  4  CO在Pd38团簇模型上的催化氧化基元反应

    Figure  4  Elementary steps of CO oxidation on Pd38 cluster

    (a): O2 dissociation; (b): CO oxidation-1; (c): CO oxidation-2 C, O, H and Pd atoms are shown as grey, red, white and blue balls, respectively

    图  5  CO在Pd平板模型上的催化氧化基元反应

    Figure  5  Elementary steps of CO oxidation on the Pd slab

    (a): O2 dissociation; (b): CO oxidation C, O, H and Pd atoms are shown as grey, red, white and blue balls, respectively

    图  6  CO在Pd38团簇模型与Pd平板模型表面上基元反应的反应势能图

    Figure  6  Potential energy diagram of CO oxidation on the Pd38 cluster and Pd slab

    表  1  CO与其反应中间物在Pd模型上的吸附能与相应的结构参数

    Table  1  Optimized geometric parameters and adsorption energies of possible adsorbates involved in CO oxidation on the Pd38 cluster and Pd slab

    Configuration Adsorption energy E/eV Geometric parameters/nm
    CO-hcp/Pd38 -1.98 Pd1-C: 0.3088; Pd2-C: 0.3086; Pd3-C: 0.3084
    CO-fcc/Pd38 -1.96 Pd1-C: 0.3130; Pd2-C: 0.3132; Pd3-C: 0.3130
    CO-top/Pd38 -1.41 Pd-C: 0.1911
    CO-edge/Pd38 -1.22 Pd-C: 0.2008
    O2/Pd38 -0.89 Pd-O1: 0.2021; Pd-O2: 0.2024
    O-hcp/Pd38 -3.63 Pd1-O: 0.2019; Pd2-O: 0.2020; Pd3-O: 0.2024
    O-bridge/Pd38 -2.59 Pd1-O: 0.1950; Pd2-O: 0.1948
    CO2-bridge/Pd38 -0.39 Pd-C: 0.2134; Pd-O: 0.2096
    CO2-edge/Pd38 -0.63 Pd-C: 0.2021
    CO-top/Pd-slab -1.37 Pd-C: 0.1932
    O2/Pd-slab -0.72 Pd-O1: 0.2030; Pd-O2: 0.2033
    O-bridge/Pd-slab -3.15 Pd1-O: 0.1981; Pd2-O: 0.1980
    O-hcp/Pd-slab -3.27 Pd1-O: 0.2034; Pd2-O: 0.2033; Pd3-O: 0.2034
    CO2/Pd-slab -0.27 Pd-C: 0.2167; Pd-O: 0.2122
    下载: 导出CSV

    表  2  CO在Pd模型上基元反应的活化能和反应能

    Table  2  Activation energies and reaction energies of the elementary steps involved in CO oxidation on the Pd38 cluster and Pd slab

    Configurations Elementary step Activation energy Ea/eV Reaction energy ΔE/eV
    O2 dissociation/Pd38 O2 → 2O 0.65 -0.48
    CO oxidation-1/Pd38 CO + O → CO2 0.75 0.05
    CO oxidation-2/Pd38 CO + O → CO2 0.51 -0.31
    O2 dissociation/Pd-slab O2 → 2O 0.79 -0.27
    CO oxidation/Pd-slab CO + O → CO2 0.87 0.24
    下载: 导出CSV
  • [1] KIEKEN L D, NEUROCK M, MEID H. Screening by kinetic monte carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen[J]. J Phys Chem B, 2005, 109(6):2234-2244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4297eceb58e5567581681eb50a14288
    [2] GANDHI H S, GRAHAM G W, MCCABE R W. Automotive exhaust catalysis[J]. J Catal, 2003, 216(1/2):433-442. http://d.old.wanfangdata.com.cn/Periodical/gdyjs200702042
    [3] CHENG X, SHI Z, GLASS N, ZHANG L, ZHANG J J, SONG D T, LIU Z S, WANG H J, SHEN J. A review of PEM hydrogen fuel cell contamination:Impacts, mechanisms, and mitigation[J]. J Power Sources, 2007, 165(2):739-756. doi: 10.1016/j.jpowsour.2006.12.012
    [4] WANG S, ANG H M, TADE M O. Volatile organic compounds in indoor environment and photocatalytic oxidation:State of the art[J]. Environ Int, 2007, 33(5):694-705. doi: 10.1016/j.envint.2007.02.011
    [5] KAGEYAMA S, SUGANO Y, HAMAGUCHI Y, KUGAI J, OHKUBO Y, SEINO S, NAKAGAWA T, ICHIKAWA S, YAMAMOTO T A. Pt/TiO2 composite nanoparticles synthesized by electron beam irradiation for preferential CO oxidation[J]. Mater Res Bull, 2013, 48(4):1347-1351. doi: 10.1016/j.materresbull.2012.11.028
    [6] ATES A, PFEIFER P, GOERKE O. Thin-Film catalytic coating of a microreactor for preferential CO oxidation over Pt catalysts[J]. Chem Ing Tech, 2013, 85(5):664-672. doi: 10.1002/cite.201200166
    [7] GARCIA-DIEGUEZ M, IGLESIA E. Structure sensitivity via decoration of low-coordination exposed metal atoms:CO oxidation catalysis on Pt clusters[J]. J Catal, 2013, 301:198-209. doi: 10.1016/j.jcat.2013.02.014
    [8] LI Y Z, YU Y, WANG J G, SONG J, LI Q, DONG M D, LIU C J. CO oxidation over graphene supported palladium catalyst[J]. Appl Catal B:Environ, 2012, 125:189-196. doi: 10.1016/j.apcatb.2012.05.023
    [9] LIU L Q, ZHOU F, WANG L G, QI X J, SHI F, DENG Y Q. Low-temperature CO oxidation over supported Pt, Pd catalysts:Particular role of FeOx support for oxygen supply during reactions[J]. J Catal, 2010, 274(1):1-10.
    [10] TODOROKI N, OSANO H, MAEYAMA T, YOSHIDA H, WADAYAMA T. Infrared reflection absorption spectral study for CO adsorption on Pd/Pt(111) bimetallic surfaces[J]. Appl Surf Sci, 2009, 256(4):943-947. doi: 10.1016/j.apsusc.2009.05.070
    [11] JAATINEN S, SALO P, ALATALO M, KULMALA V, KOKKO K. Structure and reactivity of Pd doped Ag surfaces[J]. Surf Sci, 2003, 529(3):403-409. doi: 10.1016/S0039-6028(03)00304-2
    [12] DESAI S K, NEUROCK M. First-principles study of the role of solvent in the dissociation of water over a Pt-Ru alloy[J]. Phys Rev B, 2003, 68(7):075420. doi: 10.1103/PhysRevB.68.075420
    [13] DESAI S K, NEUROCK M. A first principles analysis of CO oxidation over Pt and Pt66.7%Ru33.3% (111) surfaces[J]. Electrochim Acta, 2003, 48(25/26):3759-3773. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f934a0ca79cacdcc4cfa0378497f04c
    [14] SUO Y G, ZHUANG L, LU J T. First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction[J]. Angew Chem Int Ed, 2007, 46(16):2862-2864. doi: 10.1002/anie.200604332
    [15] YAO Y F Y. The oxidation of CO and hydrocarbons over noble-metal catalysts[J]. J Catal, 1984, 87(11):152-162. http://cn.bing.com/academic/profile?id=c51f45fa37418adba9c0c493317af2be&encoded=0&v=paper_preview&mkt=zh-cn
    [16] ERTL G. Oscillatory kinetics and spatiotemporal self-organization in reactions at solid-surfaces[J]. Science, 1991, 254(5039):1750-1755. doi: 10.1126/science.254.5039.1750
    [17] LIAN X, GUO W L, LIU F L, YANG Y, XIAO P, ZHANG Y H, TIAN W Q. DFT studies on Pt3M(M=Pt, Ni, Mo, Ru, Pd, Rh) clusters for CO oxidation[J]. Comput Mater Sci, 2015, 96:237-245. doi: 10.1016/j.commatsci.2014.09.025
    [18] KRAUSA M, VIELSTICH W. Potential oscillations during methanol oxidation at Pt-electrodes.1. Experimental conditions[J]. J Electroanal Chem, 1995, 399(1/2):7-12. doi: 10.1016-0022-0728(95)04249-0/
    [19] TONG Y Y, KIM H S, BABU P K, WASZCZUK P, WIECKOWSKI A, OLDFIELD E. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst[J]. J Am Chem Soc, 2002, 124(3):468-473. doi: 10.1021/ja011729q
    [20] DAVIES J C, BONDE J, LOGADOTTIR A, NORSKOV J K, CHORKENDORFF I. The ligand effect:CO desorption from Pt/Ru catalysts[J]. Fuel Cell, 2005, 5(4):429-435. http://cn.bing.com/academic/profile?id=d50978e820e183a1cf858fc98454726a&encoded=0&v=paper_preview&mkt=zh-cn
    [21] WANG F G, XU Y, ZHAO K F, HE D N. Preparation of palladium supported on ferric oxide nano-catalysts for carbon monoxide oxidation in low temperature[J]. Nano-Micro Lett, 2014, 6(3):233-241. doi: 10.1007/BF03353787
    [22] PARK R L, SCHREINE D. Oxidation of carbon-monoxide on palladium[J]. J Vac Sci Technol, 1974, 11(1):248-248. doi: 10.1116/1.1318581
    [23] ENGEL T, ERTL G. Surface residence times and reaction-mechanism in catalytic-oxidation of CO on Pd(111)[J]. Chem Phys Lett, 1978, 54(1):95-98. http://cn.bing.com/academic/profile?id=8f3fedb70cf03fe5727e80e9aa096fec&encoded=0&v=paper_preview&mkt=zh-cn
    [24] MURATA K, ELEEDA E, OHYAMA J, YAMAMOTO Y, ARAI S, SATSUMA A. Identification of active sites in CO oxidation over a Pd/Al2O3 catalyst[J]. Phys Chem Chem Phys, 2019, 21(33):18128-18137. doi: 10.1039/C9CP03943K
    [25] LI S Y, LIU G, LIAN H L, JIA M J, ZHAO G M, JIANG D Z, ZHANG W X, Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method[J]. Catal Commun, 2008, 9(6):1045-1049. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59f7e79367b9c439d87e6c614eaa1e5d
    [26] TELKAR M M, RODE C V, CHAUDHARI R V, JOSHI S S, NALAWADE A M. Shape-controlled preparation and catalytic activity of metal nanoparticles for hydrogenation of 2-butyne-1, 4-diol and styrene oxide[J]. Appl Catal A:Gen, 2004, 273(1/2):11-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=51472866f67c81c9bdb25a10a307157a
    [27] HUANG H H, NI X P, LOY G L, CHEW C H, TAN K L, LOH F C, DENG J F, XU G Q. Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone)[J]. Langmuir, 1996, 12(4):909-912. http://cn.bing.com/academic/profile?id=d1863c42bb8e1cba00ec703385256b5f&encoded=0&v=paper_preview&mkt=zh-cn
    [28] SARKAR A, KAPOOR S, MUKHERJEE T. Preparation, characterization, and surface modification of silver nanoparticles in formamide[J]. J Phys Chem B, 2005, 109(16):7698-7704. doi: 10.1021/jp044201r
    [29] GUNAY M E, YILDIRIM R. Modeling preferential CO oxidation over promoted Au/Al2O3 catalysts using decision trees and modular neural networks[J]. Chem Eng Res Des, 2013, 91(5):874-882. doi: 10.1016/j.cherd.2012.08.017
    [30] KUGAI J, MORIYA T, SEINO S, NAKAGAWA T, OHKUBO Y, NITANI H, YAMAMOTO T A. Comparison of structure and catalytic performance of Pt-Co and Pt-Cu bimetallic catalysts supported on Al2O3 and CeO2 synthesized by electron beam irradiation method for preferential CO oxidation[J]. Int J Hydrogen Energy, 2013, 38(11):4456-4465. doi: 10.1016/j.ijhydene.2013.01.159
    [31] GILROY K D, RUDISKIY A, PENG H C, QIN D, XIA Y N. Bimetallic nanocrystals:Syntheses, properties, and applications[J]. Chem Rev, 2016, 116(18):10414-10472. doi: 10.1021/acs.chemrev.6b00211
    [32] HUTCHINGS G J, KIELY C J. Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition[J]. Acc Chem Res, 2013, 46(8):1759-1772. doi: 10.1021/ar300356m
    [33] JACQUES S D M, MICHIEL M D, BEALE A M, SOCHI T, O'BRIEN M G, ESPINOSA-ALONSO L, WECKHUYSEN B M, BARNES P. Dynamic X-ray diffraction computed tomography reveals real-time insight into catalyst active phase evolution[J]. Angew Chem Int Ed, 2011, 50(43):10148-10152. doi: 10.1002/anie.201104604
    [34] BANGER K K, YAMASHITA Y, MORI K, PETERSON R L, LEEDHAM T, RICKARD J, SIRRINGHAUS H. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a 'sol-gel on chip' process[J]. Nat Mater, 2011, 10(1):45-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff1038b8d89f7fde8e2342406a1bfeba
    [35] UCHIYAMA T, YOSHIDA H, KUWAUCHI Y, ICHIKAWA S, SHIMADA S, HARUTA M, TAKEDA S. Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation[J]. Angew Chem Int Ed, 2011, 50(43):10157-10160. doi: 10.1002/anie.201102487
    [36] ZHANG J, JIN H, SULLIVAN M B, CHIANG F, LIM H, WU P. Study of Pd-Au bimetallic catalysts for CO oxidation reaction by DFT calculations[J]. Phys Chem Chem Phys, 2009, 11(9):1441-1446. doi: 10.1039/b814647k
    [37] HUBER B, MOSELER M. Predicting experimental signatures for the oxidation of magnesia supported palladium clusters by density functional theory[J]. Eur Phys J D, 2007, 45(3):485-489. doi: 10.1140/epjd/e2007-00178-5
    [38] KALITA B, DEKA R C. DFT study of CO adsorption on neutral and charged Pd-n(n=1-7) clusters[J]. Eur Phys J D, 2009, 53:51-58. doi: 10.1140/epjd/e2009-00044-6
    [39] KALITA B, DEKA R C. Reaction intermediates of CO oxidation on gas phase Pd-4 clusters:A density functional study[J]. J Am Chem Soc, 2009, 131(37):13252-13254. doi: 10.1021/ja904119b
    [40] CHEN H, WU Y, QI S, CHEN Y, YANG M. Deoxygenation of octanoic acid catalyzed by hollow spherical Ni/ZrO2[J]. Appl Catal A:Gen, 2017, 529:79-90. doi: 10.1016/j.apcata.2016.10.014
    [41] WANG B, SONG L, ZHANG R. The dehydrogenation of CH4 on Rh(111), Rh(110) and Rh(100) surfaces:A density functional theory study[J]. Appl Surf Sci, 2012, 258(8):3714-3722. doi: 10.1016/j.apsusc.2011.12.012
    [42] ZHANG R, SONG L, WANG Y. Insight into the adsorption and dissociation of CH4 on Pt(h k l) surfaces:A theoretical study[J]. Appl Surf Sci, 2012, 258(18):7154-7160. doi: 10.1016/j.apsusc.2012.04.020
    [43] WANG D, LI Y. Bimetallic nanocrystals:Liquid-phase synthesis and catalytic applications[J]. Adv Mater, 2011, 23(9):1044-1060. doi: 10.1002/adma.201003695
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  25
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-12
  • 修回日期:  2020-03-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-04-10

目录

    /

    返回文章
    返回