留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体核磁碳结构参数的修正及其在煤结构分析中的应用

陈丽诗 王岚岚 潘铁英 周扬 张媛媛 张德祥

陈丽诗, 王岚岚, 潘铁英, 周扬, 张媛媛, 张德祥. 固体核磁碳结构参数的修正及其在煤结构分析中的应用[J]. 燃料化学学报(中英文), 2017, 45(10): 1153-1163.
引用本文: 陈丽诗, 王岚岚, 潘铁英, 周扬, 张媛媛, 张德祥. 固体核磁碳结构参数的修正及其在煤结构分析中的应用[J]. 燃料化学学报(中英文), 2017, 45(10): 1153-1163.
CHEN Li-shi, WANG Lan-lan, PAN Tie-ying, ZHOU Yang, ZHANG Yuan-yuan, ZHANG De-xiang. Calibration of solid state NMR carbon structural parameters and application in coal structure analysis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1153-1163.
Citation: CHEN Li-shi, WANG Lan-lan, PAN Tie-ying, ZHOU Yang, ZHANG Yuan-yuan, ZHANG De-xiang. Calibration of solid state NMR carbon structural parameters and application in coal structure analysis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1153-1163.

固体核磁碳结构参数的修正及其在煤结构分析中的应用

基金项目: 

国家重点研发计划项目 2016YFB0600303

详细信息
    通讯作者:

    张德祥, Tel:021-64252367, E-mail:zdx@ecust.edu.cn

  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 中图分类号: TQ53

Calibration of solid state NMR carbon structural parameters and application in coal structure analysis

Funds: 

the National Key Research and Development Program of China 2016YFB0600303

  • 摘要: 为消除13C CP/MAS/TOSS NMR测试中碳核NOE效应,获得相对准确的碳结构参数,考察了不同模型化合物的碳核NOE效应强度。结果表明,不同模型化合物碳谱分峰拟合的测试值与样品碳结构参数的理论值之间存在明显误差,其中,脂肪碳在25%-125%、芳香碳为4%-50%,NOE效应在固体核磁碳谱测试中影响显著。为此,将模型化合物脂肪碳和芳香碳的实测值和理论值进行回归分析,得到非线性回归方程。用该方程对9,10-二甲基蒽进行碳结构修正,发现修正后脂肪碳实测值与理论值之间误差由不修正时的119.60%减小至7.84%,芳香碳误差为由不修正时的-17.10%到1.11%,修正后误差均在10%以内;同时用该回归方程修正了不同煤的碳结构参数,发现不同煤未修正的H/C原子比与其元素分析H/C原子比误差在45%-53%,修正后误差只有4%-13%,与元素分析结果具有一致性,表明非线性回归方程能够方便、准确地消除固体核磁NOE效应,为煤中碳结构分析提供新的技术支撑。
    1)  本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 图  1  不同模型化合物13C CP/MAS/TOSS NMR以及分峰拟合图

    Figure  1  Different model compounds13C CP/MAS/TOSS NMR and fitted spectra

    (A): 3, 4-dimethyl benzoic acid; (B): sodium dodecyl benzene sulfonic acid; (C): 2-naphthalene acetic acid; (D): 2-methyl naphthalene; (E): 9-methyl anthracene

    图  2  理论脂肪碳与实测脂肪碳的关系

    Figure  2  Correlation of theory and measured aliphatic carbon

    图  3  理论芳香碳与实测芳香碳的关系

    Figure  3  Correlation of theory and measured aromatic carbon

    图  4  9, 10-dimethyl anthracene13C CP/MAS/TOSS NMR以及分峰拟合图

    Figure  4  9, 10-dimethyl anthracene13C CP/MAS/TOSS NMR and fitted spectra

    图  5  小龙潭、内蒙胜利原煤、神木原煤13C CP/MAS/TOSS NMR谱图以及分峰拟合图

    Figure  5  XLT, NMSL and SM13C CP/MAS/TOSS NMR spectra and fitted spectra

    表  1  不同煤种的工业分析与元素分析

    Table  1  Proximate and ultimate analysis of different coals

    Sample Proximate analyses w/% Ultimate analyses wdaf/% H/Ce O/Cf
    Mada Adb Vdafc FCdaf C H N S Od
    XLT 16.68 10.21 55.62 44.38 68.94 4.72 1.86 1.21 23.26 0.822 0.253
    NMSL 9.58 14.41 46.48 53.52 72.99 4.65 1.16 1.40 19.80 0.764 0.203
    SM 3.78 8.63 37.97 62.03 84.24 4.99 1.08 0.32 9.37 0.711 0.083
    a: ad, air dry basis;b: d, dry basis;c: daf, dry ash-free basis;d: by difference;e: atomic ratio, H/C=(H%×12)/C%;f: atomic ratio, O/C= (O%×12)/(C%×16)
    下载: 导出CSV

    表  2  13C NMR中不同类型碳对应的化学位移

    Table  2  Main characters for different structural carbons in solid-state13C NMR spectra

    Assignment Location Chemical shift δ Characters
    Aliphatic methyl R-CH3 14-22 fal3
    Aromatic methyl 22-26 fala
    Methylene -CH2, 26-37 fal2
    Quaternery sp3 C -CH--C 37-50 fal1, fal*
    Oxygen aliphatic carbon R-O-R, 50-95 falO
    Protonated aromatic carbon 95-129 faH
    Aromatic bridgehead carbon 129-137 faB
    Aliphatic substituted aromatic carbon 137-149 faS
    Oxygen aromatic carbon 149-164 faO
    Carboxyl RCOOH 164-190 faCC1
    Quinone and carbonyl carbon RCOR 190-220 faCC2
    abbreviations in table 2 are as follows: fal3: fraction of aliphatic methyl carbon; fala: fraction of aromatic methyl carbon; fal2: fraction of methylene carbon; fal1: fraction of methine carbon; fal*: fraction of carbon that is aliphatic and either quaternary, methyl, or mobile methylene; falO: fraction of total carbon associated with aliphatic ethers and alcohols; faH: protonated aromatic carbon; faB: bridgehead aromatic carbon; faS: alkyl substituted aromatic carbon; faO: oxygenated aromatic carbon; faCC1: fraction of carboxyl, faCC2: fraction of quinone and carbonyl carbons.
    下载: 导出CSV

    表  3  不同模型化合物不同类型有机碳分布

    Table  3  Carbon structure distributions of the different model compounds

    Sample Structure parameter distribution /%
    fal3 fala fal2 fal1, fal* falO fal faH faB+ faS+ faO faCC1+ faCC2 fa
    3, 4-dimethyl benzoic acid 0.00 40.42 0.00 0.00 0.00 40.42 33.42 15.27 0.00 59.58
    sodium dodecyl benzene sulfonic acid 7.71 0.00 75.40 0.00 0.00 83.11 8.89 8.00 0.00 16.89
    2-naphthalene acetic acid 0.00 0.00 11.92 0.00 0.00 11.92 64.80 11.24 12.04 88.08
    2-methyl naphthalene 0.00 20.42 0.00 0.00 0.00 20.42 62.34 27.28 0.00 79.58
    9-methyl anthracene 0.00 13.60 0.00 0.00 0.00 13.60 37.83 48.57 0.00 86.40
    下载: 导出CSV

    表  4  不同模型化合物碳结构理论值与实测值比较

    Table  4  Coal structure comparison of different models compound error theory and measured values

    Sample Aliphatic(fal) Aromatic(fa)
    measured value theoretical value relativeerror /% measured value theoretical value relative error /%
    3, 4-dimethyl benzoic acid 40.42 22.23 +81.80 59.58 77.77 -23.41
    sodium dodecyl benzene sulfonic acid 83.11 66.67 +24.70 16.89 33.33 -49.30
    2-naphthalene acetic acid 11.92 8.33 +43.10 88.08 91.67 -3.90
    2-methyl naphthalene 20.42 9.09 +124.60 79.58 90.91 -12.50
    9-methyl anthracene 13.60 6.67 +103.90 86.40 93.33 -7.40
    下载: 导出CSV

    表  5  9, 10-二甲基蒽不同类型有机碳分布

    Table  5  Carbon structure distributions of the 9, 10-dimethyl anthracene

    Sample Structure parameter distribution /%
    fal3 fala fal2 fal1, fal* falO fal faH faB+ faS+ faO faCC1+ faCC2 fa
    9, 10-methyl anthracene 0.00 27.45 0.00 0.00 0.00 27.45 35.85 36.70 0.00 72.55
    下载: 导出CSV

    表  6  9, 10-二甲基蒽中碳结构实测值和理论值误差

    Table  6  9, 10-dimethyl anthracene error theory and measured value

    Sample Aliphatic(fal) Aromatic(fa)
    measured value theoretical value relative error /% measured value theoretical value relative error /%
    9, 10-methyl anthracene 27.45 12.50 +119.60 72.55 87.50 -17.10
    下载: 导出CSV

    表  7  9, 10-二甲基蒽修正后实测值和理论值误差

    Table  7  9, 10-dimethyl anthracene error theory and calibrated values

    Sample Aliphatic(fal) Aromatic(fa)
    calibrated value theoretical value relative error /% calibrated value theoretical value relative error /%
    9, 10-methyl anthracene 13.48 12.50 7.84 86.53 87.50 -1.11
    下载: 导出CSV

    表  8  修正后9, 10-二甲基蒽不同类型有机碳分布

    Table  8  Carbon structure distributions of the 9, 10-dimethyl anthracene after calibration

    Sample Structure parameter distribution /%
    fal3 fala fal2 fal1, fal* falO fal faH faB+ faS+ faO faCC1+ faCC2 fa
    9, 10-methyl anthracene 0.00 13.48 0.00 0.00 0.00 13.48 42.76 43.77 0.00 86.53
    下载: 导出CSV

    表  9  不同煤种不同类型有机碳分布

    Table  9  Carbon structure distributions of the different coals

    Sample Structure parameter distribution /%
    fal3 fala fal2 fal1, fal* falO fal faH faB faS faO faCC1 faCC2 fa
    XLT 11.95 12.43 14.45 3.95 3.77 46.55 17.1 12.26 8.97 5.91 4.71 4.50 53.45
    NMSL 4.93 15.61 11.53 2.78 6.58 41.43 23.80 10.48 7.57 8.24 5.76 2.72 58.57
    SM 12.03 9.56 7.64 5.58 1.78 36.59 29.24 24.77 5.96 3.26 0.00 0.18 63.41
    下载: 导出CSV

    表  10  修正后不同煤种不同类型有机碳分布

    Table  10  Calibration of carbon structure distributions of the different coals

    Sample Structure parameter distribution /%
    fal3 fala fal2 fal1, fal* falO fal faH faB faS faO faCC1 faCC2 fa
    XLT 6.80 7.07 8.22 2.26 2.14 26.49 23.52 16.86 12.34 8.13 6.47 6.19 73.51
    NMSL 2.70 8.53 6.29 1.57 3.37 22.46 31.51 13.87 10.02 10.91 7.62 3.61 77.54
    SM 6.25 4.97 3.97 2.90 0.93 19.02 37.34 31.63 7.61 4.16 0.00 0.24 80.98
    下载: 导出CSV

    表  11  不同煤种元素分析H/C原子比和NMR修正前后H/C原子比

    Table  11  Different types of H/C before and after calibrated in ultimate analyses and NMR

    Sample Ultimate analyses H/C NMR H/C Error of ultimate analyses and NMR H/C /% NMR calibrated H/C Error of ultimate analyses and NMR calibrated H/C /%
    XLT 0.822 1.196 45.46 0.856 4.15
    NMSL 0.764 1.166 52.56 0.862 12.95
    SM 0.711 1.061 49.19 0.772 8.69
    下载: 导出CSV

    表  12  不同煤种修正前后的芳香度

    Table  12  Different types of aromaticity before and after calibration

    Sample Tested aromaticity Calibrated aromaticity
    XLT 0.535 0.735
    NMSL 0.586 0.775
    SM 0.634 0.810
    下载: 导出CSV
  • [1] 虞继舜.煤化学[M].北京:冶金工业出版社, 2000.

    YU Ji-shun. Coal Chemistry[M]. Beijing:Metallurgical Industry Press, 2000.
    [2] 张蓬洲, 李丽云, 叶朝辉.用固体高分辨核磁共振研究煤结构[J].燃料化学学报, 1993, 21(3):310-316. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX199303012.htm

    ZHANG Peng-zhou, LI Li-yun, YE Chao-hui. Study of structural feature of coal by solid state13C NMR spectroscopy. J Fuel Chem Technol, 1993, 21(3):310-316. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX199303012.htm
    [3] 刘传福, 孙润仓, 叶君.固体核磁CP/MAS13C NMR在植物纤维原料研究中的应用[J].中国造纸学报, 2005, 20(2):184-188.

    LIU Chuan-fu, SUN Run-cang, YE Jun. Application of CP/MAS13C-NMR Spectroscopy in the Study of Lignocellulosic Materials[J]. Trans China Pulp Pap, 2005, 20(2):184-188.
    [4] 马志茹, 张蓬洲, 李丽云.核磁共振技术在煤化学研究中的应用[J].煤炭转化, 1996, 19(1):33-39. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH601.003.htm

    MA Zhi-ru, ZHANG Peng-zhou, LI Li-yun. The progress of NMR techniques applied to coal chemistry[J]. Coal Convers, 1996, 19(1):33-39. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH601.003.htm
    [5] MICHAEL A W, RONALD J P. New solid state NMR techniques in coal analysis[J]. TrAC Trends Anal Chem, 1984, 3(6):144-147. doi: 10.1016/0165-9936(84)88007-3
    [6] MARK S S, RONALD J P, DAVID M G.13C Solid-state NMR of Argonne Premium Coals[J]. Energy Fuels, 1989, 3(2):187-193. doi: 10.1021/ef00014a012
    [7] 李振广.干酪根结构中碳分布特征及其与生烃潜力的关系-13C NMR C P/MAS与DD技术的应用[J].地球化学, 1995, 24(2):101-109.

    LI Zheng-guang. Carbon distribution of kerogen and it's relationship to hydrocarbon generation potential-application of13C NMR CP/MAS and DD techniques[J]. Geochimica, 1995, 24(2):101-109.
    [8] 陈明秀.用固体交叉极化魔角自旋(CP/MAS)和偶极去相核磁共振光谱对煤的研究[J].煤炭分析及利用, 1989, 4(3):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-MTFX198903000.htm

    CHEN Ming-xiu. The application of solid cross polarization magic angle spinning(CP/MAS) and dipole to nuclear magnetic resonance(NMR) spectroscopy to study coal[J]. Coal Anal Util, 1989, 4(3):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-MTFX198903000.htm
    [9] XIAO Y C, MARK A C, MARIA M, MAO J. Chemical structure changes in kerogen from bituminous coal in response to dike intrusions as investigated by advanced solid-state13C NMR spectroscopy[J]. Int J Coal Geol, 2013, 108:53-64. doi: 10.1016/j.coal.2012.05.002
    [10] MAO J, CAO X, NAN C O, KLAUS S. Advanced solid-state NMR spectroscopy of natural organic matter[J]. Prog Nucl Magn Reson Spectrosc, 2017, 100:17-22. doi: 10.1016/j.pnmrs.2016.11.003
    [11] STACEY M A, KANMI M, GORDON J K, MAREK P. Solid-state NMR studies of fossil fuels using one-and two-dimensional methods at high magnetic field[J]. Energy Fuels, 2012, 26(7):4405-4412. doi: 10.1021/ef3004637
    [12] CHENG H N, LYNDA H W, KLASSON K T, JOHN C E. Solid-state NMR and ESR studies of activated carbons produced from pecan shells[J]. Carbon, 2010, 48(9):2455-2469. doi: 10.1016/j.carbon.2010.03.016
    [13] MICHAEL A W, ANTHONY M V. Developments in high-solid-state13C NMR spectroscopy of coals[J]. Org Geochem, 1985, 8(5):299-312. doi: 10.1016/0146-6380(85)90009-9
    [14] JAMES A F, ROBERTO G, JOHN C L. Single-pulse excitation13C NMR measurements on the argonne premium coal samples[J]. Energy Fuels, 1992, 6(5):598-602. doi: 10.1021/ef00035a009
    [15] ROBERT V L, DAVID C S, COLIN E S. Quantitative solid state13C NMR studies of highly cross-linked poly(divinylbenzene) resins[J]. Macromolecules, 1997, 30(10):2868-2875. doi: 10.1021/ma9616470
    [16] ZHANG R, KAMAL H M. Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy[J]. J Magn Reson, 2016, 266:59-66. doi: 10.1016/j.jmr.2016.03.006
    [17] KOH K, SATORU M, MASAKASTSU N. Studies on the chemical structural change during carbonization process[J]. Energy Fuels, 1996, 10(3):672-678. doi: 10.1021/ef9501096
    [18] 王立英, 冯继文, 叶朝辉.典型高分子材料的固体核磁共振研究[J].波谱学杂志, 2006, 23(4):547-549. http://cdmd.cnki.com.cn/Article/CDMD-80020-2006155703.htm

    WANG Li-ying, FENG Ji-wen, YE Chao-hui. Typical polymers studied by solid-state NMR[J]. Chin J Magn Reson, 2006, 23(4):547-549. http://cdmd.cnki.com.cn/Article/CDMD-80020-2006155703.htm
    [19] 徐大江, 舒婕.高分辨固体核磁共振技术在材料化学研究中的应用[J].分析仪器, 2015, 1:25-34. doi: 10.3969/j.issn.1001-232x.2015.01.005

    XU Da-jiang, SHU Jie. Application of high-resolution solid-state nuclear magnetic resonance techniques in chemical materials. Anal Instrum, 2015, 1:25-34. doi: 10.3969/j.issn.1001-232x.2015.01.005
    [20] 潘铁英, 张玉兰, 苏克曼.波谱解析法[M].上海:华东理工大学出版社. 2009.

    PAN Tie-ying, ZHANG Yu-lan, SU Ke-man. Spectrum Analytical Method[M]. Shanghai:East China University of Science and Technology Press, 2009.
    [21] 相建华, 曾凡桂, 李彬.成庄无烟煤大分子结构模型及其分子模拟[J].燃料化学学报, 2013, 41(4):391-399. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18157.shtml

    XIANG Jian-hua, ZENG Fan-gui, LI Bin. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. J Fuel Chem Technol, 2013, 41(4):391-399. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18157.shtml
    [22] 相建华, 曾凡桂, 梁虎珍.兖州煤大分子结构模型构建及其分子模拟[J].燃料化学学报, 2011, 39(7):481-488. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17764.shtml

    XIANG Jian-hua, ZENG Fan-gui, LIANG Hu-zhen. Model construction of the macro molecular structure of Yanzhou coal and its molecular simulation[J]. J Fuel Chem Technol, 2011, 39(7):481-488. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17764.shtml
    [23] ANDREAS G. Aspects of solid state13C CPMAS NMR spectroscopy in coals from the Balkan peninsula[J]. J Serb Chem Soc, 2003, 68(8/9):599-605.
    [24] 蔺华林, 李克健, 章序文.上湾煤及其惰质组富集物的结构表征与模型构建[J].燃料化学学报, 2013, 41(6):641-648. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18190.shtml

    LIN Hua-lin, LI Ke-jian, ZHANG Xu-wen. Structure characterization and model construction of Shangwan coal and it's inertinite concentrated[J]. J Fuel Chem Technol, 2013, 41(6):641-648. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18190.shtml
    [25] WEI Z, GAO X, ZHANG D, DA J. Assessment of thermal evolution of kerogen geopolymers with their structural parameters measured by solid-state13C NMR spectroscopy[J]. Energy Fuels, 2005, 19(1):240-250. doi: 10.1021/ef0498566
    [26] LIU P, WANG L L, ZHOU Y, PAN T Y, LU X L, ZHANG D X. Effect of hydrothermal treatment on the structure and pyrolysis product distribution of Xiaolongtan lignite[J]. Fuel, 2016, 164:110-118. doi: 10.1016/j.fuel.2015.09.092
    [27] 刘鹏, 王岚岚, 张德祥.先锋褐煤在水热处理过程中的结构演绎[J].燃料化学学报, 2016, 44(2):129-137. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18771.shtml

    LIU Peng, WANG Lan-lan, ZHANG De-xiang. Structural evolution of Xianfe ng lignite during hydrothermal treatment[J]. J Fuel Chem Technol, 2016, 44(2):129-137. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18771.shtml
    [28] YAN J, BAI Z, BAI J, GUO Z, LI W. Effects of organic solvent treatment on the chemical structure and pyrolysis reactivity of brown coal[J]. Fuel, 2014, 128(4):39-45.
    [29] 张娉, 潘铁英, 张德祥.煤直接液化中油浆热溶产物的13C NMR研究[J].波谱学杂志, 2006, 23(1):41-47.

    ZHANG Ping, PAN Tie-ying, Zhang De-xiang.Thermally dissolved products of coal-oil slurry during direct coal liquefaction studied by NMR spectroscopy[J]. Chin J Magn Reson, 2006, 23(1):41-47.
    [30] LOVE G D, LAW R V, SNAPE C E. Determination of Nonprotonated Aromatic Carbon Concentrations in Coals by Single Pulse Excitation13C NMR[J]. Energy Fuels, 1993, 7(5):639-644. doi: 10.1021/ef00041a012
    [31] MERCEDS M V, JOHN M AN, JOSE D R, COLIN E S. Quantitative solid-state13C NMR. measurements on cokes, chars and coal tar pitch fractions[J]. Fuel, 1996, 75(15):1721-1726. doi: 10.1016/S0016-2361(96)00151-2
    [32] ROBERT A MEYERS. Coal Structure[M]. New York:Academic press. 1982.
    [33] FIDEL C M, VLADISLAV V L, JONATHAN P M. A molecular model for Illinois No. 6 Argonne Premium coal:Moving toward capturing the continuum structure[J]. Fuel, 2012, 95(1):35-49.
    [34] HIROYUKI K, YASUMASA Y, IKUO S. Studies on structural changes of coal density-separated components during pyrolysis by means of solid-state13C NMR spectra[J]. J Anal Appl Pyrolysis, 2000, 53(1):35-50. doi: 10.1016/S0165-2370(99)00058-3
  • 加载中
图(5) / 表(12)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  35
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-05
  • 修回日期:  2017-06-20
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-10-10

目录

    /

    返回文章
    返回