留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu改性Fe/Al-PILC催化剂的SCR-C3H6脱硝特性实验研究

程江浩 苏亚欣 林睿 张显威 温妮妮 邓文义 周皞

程江浩, 苏亚欣, 林睿, 张显威, 温妮妮, 邓文义, 周皞. Cu改性Fe/Al-PILC催化剂的SCR-C3H6脱硝特性实验研究[J]. 燃料化学学报(中英文), 2019, 47(7): 823-833.
引用本文: 程江浩, 苏亚欣, 林睿, 张显威, 温妮妮, 邓文义, 周皞. Cu改性Fe/Al-PILC催化剂的SCR-C3H6脱硝特性实验研究[J]. 燃料化学学报(中英文), 2019, 47(7): 823-833.
CHENG Jiang-hao, SU Ya-xin, LIN Rui, ZHANG Xian-wei, WEN Ni-ni, DENG Wen-yi, ZHOU Hao. Experimental study on the selective catalytic reduction of NO by C3H6 over Cu modified Fe/Al-PILC catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 823-833.
Citation: CHENG Jiang-hao, SU Ya-xin, LIN Rui, ZHANG Xian-wei, WEN Ni-ni, DENG Wen-yi, ZHOU Hao. Experimental study on the selective catalytic reduction of NO by C3H6 over Cu modified Fe/Al-PILC catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 823-833.

Cu改性Fe/Al-PILC催化剂的SCR-C3H6脱硝特性实验研究

基金项目: 

江苏省自然科学基金 BK20181161

中央高校基本科研业务费 2232019D3-24

国家自然科学基金 51278095

详细信息
  • 中图分类号: X511

Experimental study on the selective catalytic reduction of NO by C3H6 over Cu modified Fe/Al-PILC catalysts

Funds: 

Jiangsu Province Natural Science Foundation BK20181161

the Fundamental Research Funds for the Central Universities 2232019D3-24

National Natural Science Foundation of China 51278095

More Information
    Corresponding author: SU Ya-xin, Tel: 021-67792552, E-mail: suyx@dhu.edu.cn
  • 摘要: 为提高Fe/Al-PILC催化剂的SCR脱硝的低温活性,采用Cu对Fe/Al-PILC催化剂进行改性。采用超声浸渍法合成系列xCu-Fe/Al-PILC催化剂,通过XRD、N2吸附-脱附、H2-TPR、UV-vis、XPS、Py-FTIR等系列技术手段进行表征。在固定床微反应器上进行C3H6的选择性催化还原NO的实验。结果表明,经过铜改性后的xCu-Fe/Al-PILC催化剂有效解决了Fe/Al-PILC催化剂低温SCR活性不足的问题,同时提高了中高温活性。催化剂在200-500℃能够实现80%以上脱硝效率,其中,0.13Cu-Fe/Al-PILC在250-500℃实现了90%以上NO转化率,并在250℃达到最高脱硝效率93%。XRD、N2吸附-脱附结果表明,经过铜改性的催化剂可以提供更多反应活性位,提高反应速率。H2-TPR结果表明,掺杂铜使催化剂获得低温还原能力,同时增强了中高温还原能力。UV-vis、XPS结果表明,铜掺杂不仅使铁获得更高氧化态,同时产生了更多低温活性物质孤立Fe3+。Py-FTIR结果表明,催化剂表面同时存在Lewis酸和Brønsted酸,Lewis酸是SCR反应活性中心。
  • 图  1  Cu/Al-PILC以及Fe/Al-PILC和不同铜铁物质的量比xCu-Fe/Al-PILC催化剂的SCR反应活性

    Figure  1  SCR activities over Cu/Al-PILC, Fe/Al-PILC and xCu-Fe /Al-PILC with different molar ratio of Cu to Fe

    (a): NO conversion; (b): C3H6 conversion; (c): N2 selectivity; (d): effect of the molar ratio of Cu to Fe reaction conditions: 0.05% NO, 0.2% C3H6, 1% O2, He=balanced, GHSV=17000 h-1

    图  2  反应空速对0.13Cu-Fe/Al-PILC催化剂活性的影响

    Figure  2  Influence of GHSV on the activity of 0.13Cu-Fe/Al-PILC catalyst

    reaction conditions: 0.05% NO, 0.2% C3H6, 1% O2, He=balanced

    图  3  催化剂的XRD谱图

    Figure  3  XRD patterns of the catalysts

    a: Fe/Al-PILC; b: 0.11Cu-Fe/Al-PILC; c: 0.13Cu-Fe/Al-PILC; d: 0.38Cu-Fe/Al-PILC

    图  4  催化剂的N2吸附-脱附等温曲线

    Figure  4  Nitrogen adsorption-desorption isotherms of the catalysts

    图  5  催化剂的H2-TPR谱图

    Figure  5  H2 -TPR profiles of Fe/Al-PILC and xCu-Fe/Al-PILC

    a: Fe/Al-PILC; b: 0.11Cu-Fe/Al-PILC;
    c: 0.13Cu-Fe/Al-PILC; d: 0.38Cu-Fe/Al-PILC

    图  6  催化剂的UV-vis谱图

    Figure  6  UV-vis spectra of the catalysts

    a: Fe/Al-PILC; b: 0.11Cu-Fe/Al-PILC;
    c: 0.13Cu-Fe/Al-PILC; d: 0.38Cu-Fe/Al-PILC

    图  7  催化剂Cu 2p的XPS谱图

    Figure  7  XPS spectra of Cu 2p of xCu-Fe/Al-PILC

    a: 0.11Cu-Fe/Al-PILC; b: 0.13Cu-Fe/Al-PILC; c: 0.38Cu-Fe/Al-PILC

    图  8  催化剂Fe 2p的XPS谱图

    Figure  8  XPS spectra of Fe 2p of Fe/Al-PILC and xCu-Fe/Al-PILC

    a: Fe/Al-PILC; b: 0.11Cu-Fe/Al-PILC;
    c: 0.13Cu-Fe/Al-PILC; d: 0.38Cu-Fe/Al-PILC

    图  9  催化剂的吡啶吸附红外光谱谱图

    Figure  9  FT-IR spectra of pyridine adsorption of Fe/Al-PILC and xCu-Fe/Al-PILC

    (a): 150 ℃ desorption; (b): 300 ℃ desorption

    表  1  催化剂的孔隙结构参数

    Table  1  Textural parameters of the catalysts

    Sample ABETa/ (m2·g-1) Pore volumebv/ (cm3·g-1) Average pore sizec d/nm
    Fe/Al-PILC 61 0.176 11.31
    0.11Cu-Fe/Al-PILC 73 0.193 10.23
    0.13Cu-Fe/Al-PILC 81 0.194 9.02
    0.38Cu-Fe/Al-PILC 66 0.143 8.73
    a: surface area calculated by Brunauer-Emmett-Teller (BET) method; b: pore volume determined by the BJH method on the adsorption isotherm leg; c: average pore size determined by BJH method
    下载: 导出CSV

    表  2  催化剂Fe 2p3/2的XPS分析

    Table  2  XPS analysis of Fe 2p3/2 for the catalysts

    Sample Binding energy E/eV Peak intensity/%a I(Fe3+A)/I(Fe3+B)
    Fe3+A Fe3+B
    Fe/Al-PILC 710.6 712.6 1.49
    0.11Cu-Fe/Al-PILC 710.7 712.4 0.98
    0.13Cu-Fe/Al-PILC 711.0 713.3 0.86
    0.38Cu-Fe/Al-PILC 710.8 712.7 1.23
    a: ratio of the intensity of the Fe3+A and Fe3+B peaks (main peak)
    下载: 导出CSV

    表  3  不同催化剂的B酸和L酸含量

    Table  3  Brønsted and Lewis acid content of different catalysts

    Sample 150 ℃ desorption /(μmol·g-1) 300 ℃ desorption /(μmol·g-1)
    BAS LAS BAS LAS
    Fe/Al-PILC 0.86 45.71 0.38 16.08
    0.11Cu-Fe/Al-PILC 1.09 28.51 0.26 5.49
    0.13Cu-Fe/Al-PILC 1.88 36.58 0.80 12.38
    0.38Cu-Fe /Al-PILC 1.13 30.28 0.65 11.35
    下载: 导出CSV
  • [1] IWAMOTO M, YAHIRO H, YU U Y. Selective reduction of NO by lower hydrocarbons in the presence of O2 and SO2 over copper ion-exchanged zeolites[J]. Cataly, 1990, 32(6):430-433.
    [2] HELD W, KOENIG A, RICHTER T, PUPPE L. Catalytic NOx reduction in net oxidizing exhaust gas[J]. SAE Trans, 1990, 99(4):209-216.
    [3] GU H, CHUN K M, SONG S. The effects of hydrogen on the efficiency of NOx reduction via hydrocarbon-selective catalytic reduction (HC-SCR) at low temperature using various reductants[J]. Int J Hydrogen Energy, 2015, 40(30):9602-9610. doi: 10.1016/j.ijhydene.2015.05.070
    [4] LI L D, GUAN N J. HC-SCR reaction pathways on ion exchanged ZSM-5 catalysts[J]. Microporous Mesoporous Mater, 2009, 117(1/2):450-457.
    [5] SCHURICHT F, RESCHETILOWSKI W. Simultaneous selective catalytic reduction (SCR) of NOx and N2O over Ag/ZSM-5-catalytic studies and mechanistic implications[J]. Microporous Mesoporous Mater, 2012, 164:135-144. doi: 10.1016/j.micromeso.2012.07.018
    [6] YAN S H, WANG X P, WANG W C, LIU Z Q, NIU J H. Selective catalytic reduction of NO by C2H2 over Ce-Al2O3 catalyst with rate-determining step of NO oxidation[J]. J Nat Gas Chem, 2012, 21(3):332-338. doi: 10.1016/S1003-9953(11)60373-3
    [7] MORE P M, NGUYEN D L, GRANGER P, DUJARDIN C, DONGARE M K, UMBARKAR S B. Activation by pretreatment of Ag-Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust[J]. Appl Catal B:Environ, 2015, 174-175:145-156. doi: 10.1016/j.apcatb.2015.02.035
    [8] 周皞, 苏亚欣, 邓文义, 钟方川.金属氧化物类催化剂上HC-SCR研究进展[J].环境科学与技术, 2016, 39(1):94-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201601015

    ZHOU Hao, SU Ya-xin, DENG Wen-yi, ZHONG Fang-chuan. A review of HC-SCR over metal oxides-based catalysts[J]. Environ Sci Technol, 2016, 39(1):94-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201601015
    [9] 周皞, 苏亚欣, 邓文义, 钟方川.负载金属分子筛类催化剂上HC-SCR研究进展[J].环境科学与技术, 2015, 38(10):64-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201510013

    ZHOU Hao, SU Ya-xin, DENG Wen-yi, ZHONG Fang-chuan. A review of HC-SCR over metal-based zeolite catalysts[J]. Environ Sci Technol, 2015, 38(10):64-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201510013
    [10] 王琪莹, 文焱炳, 董新法, 林维明.交联粘土合成及其在C3H6选择性催化还原NOx中的应用研究[J].高校化学工程学报, 2006, 4(20):598-603. http://d.old.wanfangdata.com.cn/Periodical/gxhxgcxb200604019

    WANG Qi-ying, WEN Yan-bing, DONG Xin-fa, LIN Wei-ming. Application of pillared clays in selective catalytic reduction of NOx by C3H6[J]. J Chem Eng Chin Univ, 2006, 4(20):598-603. http://d.old.wanfangdata.com.cn/Periodical/gxhxgcxb200604019
    [11] MENDIOROZ S, MART N-ROJO A B, RIVERA F, MART N J C, BAHAMONDE A, YATES M. Selective catalytic reduction of NOx by methane in excess oxygen over Rh based aluminium pillared clays[J]. Appl Catal B:Environ, 2006, 64(3/4):161-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a1754cdea4772b59fcd46a39df8822d6
    [12] YANG R T, THARAPPIWATTANANON N, LONG R Q. Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen[J]. Appl Catal B:Environ, 1998, 19(3/4):289-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a7e95b2e4590b9c44dca3f71df0a5ea
    [13] KONIN G A, IŁICHEV A N, MATYSHAK V A, KHOMENKO T I, KORCHAK V N, SADYKOV V A, DORONIN V P, BUNINA R V, ALIKINA G M, KUZNETSOVA T G, PAUKSHTIS E A, FENELONOV V B, ZAIKOVSKⅡ V I, IVANOVA A S, BELOSHAPKIN S A, ROZOVSKⅡ A Y, TRETYAKOV V F, ROSS J R H, BREEN J P. Cu, Co, Ag-containing pillared clays as catalysts for the selective reduction of NOx by hydrocarbons in an excess of oxygen[J]. Top Catal, 2001, 16/17(1/4):193-197. doi: 10.1023/A:1016667822516
    [14] ZHOU H, LI K K, ZHAO B T, DENG W Y, SU Y X, ZHONG F C. Surface properties and reactivity of Fe/Al2O3/cordierite catalysts for NO reduction by C2H6:Effects of calcination temperature[J]. Chem Eng J, 2017, 326:737-744. doi: 10.1016/j.cej.2017.06.018
    [15] ZHOU H, SU Y X, LIAO W Y, DENG W Y, ZHONG F C. Preparation, characterization, and properties of monolithic Fe/Al2O3/cordierite catalysts for NO reduction with C2H6[J]. Appl Catal A:Gen, 2015, 505:402-409. doi: 10.1016/j.apcata.2015.08.025
    [16] 苏亚欣, 陆哲惺, 周皞, 窦逸峰, 邓文义.丙烷在金属铁表面还原NO的实验研究[J].燃料化学学报, 2014, 42(12):1470-1477. doi: 10.3969/j.issn.0253-2409.2014.12.009

    SU Ya-xin, LU Zhe-xing, ZHOU Hao, DOU Yi-feng, DENG Wen-yi. Experimental study on NO reduction by propane over iron[J]. J Fuel Chem Technol, 2014, 42(12):1470-1476. doi: 10.3969/j.issn.0253-2409.2014.12.009
    [17] 苏亚欣, 苏阿龙, 成豪.金属铁直接催化还原NO的实验研究[J].煤炭学报, 2013, 38(s1):206-210. http://d.old.wanfangdata.com.cn/Periodical/mtxb2013z1036

    SU Ya-xin, SU A-long, CHENG Hao. Experimental study on direct catalytic reduction of NO by metallic iron[J]. J China Coal Soc, 2013, 38(s1):206-210. http://d.old.wanfangdata.com.cn/Periodical/mtxb2013z1036
    [18] 钱文燕, 苏亚欣, 杨溪, 袁旻昊, 邓文义, 赵兵涛. Fe/Al-PILC催化C3H6选择性还原NO的实验研究[J].燃料化学学报, 2017, 45(12):1499-1507. doi: 10.3969/j.issn.0253-2409.2017.12.012

    QIAN Wen-yan, SU Ya-xin, YANG Xi, YUAN Min-hao, DENG Wen-yi, ZHAO Bing-tao. Experimental study on selective catalytic reduction of NO with propene over iron based catalysts supported on aluminum pillared clays[J]. J Fuel Chem Technol, 2017, 45(12):1499-1507. doi: 10.3969/j.issn.0253-2409.2017.12.012
    [19] YUAN M H, DENG W Y, DONG S L, LI Q C, ZHAO B T, SU Y X. Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene[J]. Chem Eng J, 2018, 353:839-848. doi: 10.1016/j.cej.2018.07.201
    [20] 董士林, 苏亚欣, 刘欣, 李前程, 袁旻昊, 周皞, 邓文义. Fe/Ti-PILC用于C3H6选择性催化还原NO的研究[J].燃料化学学报, 2018, 46(10):1231-1239. doi: 10.3969/j.issn.0253-2409.2018.10.011

    DONG Shi-lin, SU Ya-xin, LIU Xin, LI Qian-cheng, YUAN Min-hao, ZHOU Hao, DENG Wen-yi. Experimental study on selective catalytic reduction of NO by C3H6 over Fe/Ti-PILC catalysts[J]. J Fuel Chem Technol, 2018, 46(10):1231-1239. doi: 10.3969/j.issn.0253-2409.2018.10.011
    [21] SATO S, YU-U Y, YAHIRO H, MIZUNO N, IWAMOTO M. Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines[J]. Appl Catal, 1991, 70(1):L1-L5.
    [22] LI X Y, LU G, QU Z P, ZHANG D K, LIU S M. The role of titania pillar in copper-ion exchanged titania pillared clays for the selective catalytic reduction of NO by propylene[J]. Appl Catal A:Gen, 2011, 398(1/2):82-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3a77b4e983a702a154de3322732c6683
    [23] LU G, LI X Y, QU Z P, ZHAO Q D, ZHAO L, CHEN G H. Copper-ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene[J]. Chem Eng J, 2011, 168(3):1128-1133. doi: 10.1016/j.cej.2011.01.095
    [24] DORADO F, GARCÍA P B, DE LUCAS A, RAMOS M J, ROMERO A. Hydrocarbon selective catalytic reduction of NO over Cu/Fe-pillared clays:Diffuse reflectance infrared spectroscopy studies[J]. J Mol Catal A:Chem, 2010, 332(1/2):45-52.
    [25] 朱斌, 费兆阳, 陈献, 汤吉海, 崔咪芬, 乔旭. Al-PILC负载铜铁复合氧化物选择性催化还原NO中的协同作用[J].燃料化学学报, 2014, 42(9):1102-1110. doi: 10.3969/j.issn.0253-2409.2014.09.011

    ZHU Bin, FEI Zhao-yang, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. Synergetic effect of Cu-Fe composite oxides supported on Al-PILC for SCR of NO with NH3[J]. J Fuel Chem Technol, 2014, 42(9):1102-1110. doi: 10.3969/j.issn.0253-2409.2014.09.011
    [26] VALVERDE J L, DE LUCAS A, SÁNCHEZ P, DORADO F, ROMERO A. Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene[J]. Appl Catal B:Environ, 2003, 43(1):43-56. doi: 10.1016/S0926-3373(02)00274-6
    [27] WANG Q Y, LIU Z L, WU J R. Effect of preparation methods on Ti-PILCs catalysts in selective catalytic reduction of NO by propylene[J]. Adv Mater Res, 2014, 1033/1034:90-94. doi: 10.4028/www.scientific.net/AMR.1033-1034
    [28] KIM B S, LEE S H, PARK Y T, HAM S W, CHAE H J, NAM I S. Selective catalytic reduction of NOx by propene over copper-exchanged pillared clays[J]. Korean J Chem Eng, 2001, 18(5):704-710. doi: 10.1007/BF02706390
    [29] 文焱炳, 董新法, 林维明. Cu/Ce-Ti-PILC上丙烯选择催化还原NO的研究[J].广州大学学报(自然科学版), 2008, 7(1):53-57. doi: 10.3969/j.issn.1671-4229.2008.01.012

    WEN Yan-bing, DONG Xin-fa, LIN Wei-min. Study on Cu/Ce-Ti-PILC for selective catalytic reduction of NO bypropylen[J]. J Guangzhou Unv(Nat Sci Edi), 2008, 7(1):53-57. doi: 10.3969/j.issn.1671-4229.2008.01.012
    [30] QI G S, YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts[J]. Appl Catal A:Gen, 2005, 287(1):25-33. doi: 10.1016/j.apcata.2005.03.006
    [31] KWAK J H, TONKYN R G, KIM D H, SZANYI J, PEDEN C H F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J]. J Catal, 2010, 275(2):187-190.
    [32] XIA Y, ZHAN W C, GUO Y, GUO Y L, LU G Z. Fe-Beta zeolite for selective catalytic reduction of NOx with NH3:Influence of Fe content[J]. Chin J Catal, 2016, 37(12):2069-2078. doi: 10.1016/S1872-2067(16)62534-2
    [33] DELAHAY G, VALADE D, GUZMANVARGAS A, COQ B. Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods[J]. Appl Catal B:Environ, 2005, 55(2):149-155. doi: 10.1016/j.apcatb.2004.07.009
    [34] LU R J, ZHANG X Y, MA C Y, WANG Z, WANG Y F, HAO Z P. Fe-Beta catalysts prepared by heating wet ion exchange and their catalytic performances on N2O catalytic decomposition and reduction[J]. Asia-Pac J Chem Eng, 2014, 9(2):159-166. doi: 10.1002/apj.1754
    [35] SCHWIDDER M, KUMAR M S, KLEMENTIEV K, POHL M M, BRVCKNER A, GRVNERT W. Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content. Relations between active site structure and catalytic performance[J]. J Catal, 2005, 231(2):314-330. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=414ff593b03c29a74bea1b1873ecfcae
    [36] OLIVEIRA L C A, RIOS R V R A, FABRIS J D, SAPAG K, GARG V K, LAGO R M. Clay-iron oxide magnetic composites for the adsorption of contaminants in water[J]. Appl Clay Sci, 2003, 22(4):169-177. doi: 10.1016/S0169-1317(02)00156-4
    [37] DORADO F, DE LUCAS A, GARCÍA P B, ROMERO A, VALVERDE J L. Copper ion-exchanged and impregnated Fe-pillared clays Study of the influence of the synthesis conditions on the activity for the selective catalytic reduction of NO with C3H6[J]. Appl Catal A:Gen, 2006, 305(2):189-196. doi: 10.1016/j.apcata.2006.03.022
    [38] YANG R T, THARAPPIWATTANANON N, LONG R Q. Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen[J]. Appl Catal B:Environ, 1998, 19(3/4):289-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a7e95b2e4590b9c44dca3f71df0a5ea
    [39] JIN Y M, DATYE A K. Phase transformations in iron Fischer-Tropsch catalysts during temperature programmed reduction[J]. J Catal, 2000, 196(1):8-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=694a2cac373767d8b1055eec1c94d292
    [40] SUN M M, CAO Y, LAN L, ZOU S, FANG Z T, CHEN Y Q. Selective catalytic oxidation of ammonia to nitrogen over iron and copper bimetallic catalysts[J]. Acta Phys-Chim Sin, 2014, 30(12):2300-2306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201412014
    [41] KUMAR M S, SCHWIDDER M, GRVNERT W, BRVCKNER A. On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts:New insights by a combined EPR and UV/VIS spectroscopic approach[J]. J Catal, 2004, 227(2):384-397.
    [42] LU L, LI L, WANG X, LI G. Understanding of the finite size effects on lattice vibrations and electronic transitions of nano alpha-Fe2O3.[J]. J Phys Chem B, 2005, 109(36):17151-17156. doi: 10.1021/jp052780+
    [43] TIPPINS H H. Charge-transfer spectra of transition-metal ions in corundum[J]. Phys Rev B, 1970, 1(1):126-135. doi: 10.1103/PhysRevB.1.126
    [44] GIORDANINO F, VENNESTROM P N R LUNDEGAARD L F, STAPPEN F N, MOSSIN S, BEATO P, BORDIGA S, LAMBERTI C. Characterization of Cu-exchanged SSZ-13:A comparative FT-IR, UV-Vis and EPR study with Cu-ZSM-5 and Cu-beta with similar Si/Al and Cu/Al ratios[J]. Dalton Trans, 2013, 42(35):12741-12761. doi: 10.1039/c3dt50732g
    [45] ISMAGILOV Z R, YASHNIK S A, ANUFRIENKO V F, LARINA T V, VASENIN N T, BULGAKOV N N, VOSELET S V, TSYKOZA L T. Linear nanoscale clusters of CuO in Cu-ZSM-5 catalysts[J]. Appl Surf Sci, 2004, 226(1/3):88-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a1a010b569910ec98a76c8ff1f8dfe52
    [46] KIM M H, NAM I-S, KIM Y G. Characteristics of mordenite-type zeolite catalysts deactivated by SO2 for the reduction of NO with hydrocarbons[J]. J Catal, 1998, 179(2):350-360. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c2eb7ed5ad12d39edce8db0f9ea918a
    [47] CHADWICK D, HASHEMI T. Adsorbed corrosion inhibitors studied by electron spectroscopy:Benzotriazole on copper and copper alloys[J]. Corros Sci, 1978, 18(1):39-51.
    [48] GONG J L, YUE H R, ZHAO Y J, ZHAO S, ZHAO L, LV J, WANG S P, MA X B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. J Am Chem Soc, 2012, 134(34):13922-13925. doi: 10.1021/ja3034153
    [49] GUO H J, ZHANG H R, PENG F, YANG H J, XIONG L, WANG C, HUANG C, CHEN X D, MA L L. Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas[J]. Appl Catal A:Gen, 2015, 503(25):51-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ee6a28e5bd3bc7e39e77a92fa51fede0
    [50] LI F, ZHANG L H, EVANS D G, DUAN X. Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides[J]. Colloids Surf A, 2004, 244(1/3):169-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ee0110808fbd57b633b0f8aa7605439
    [51] DATKA J, TUREK A M, JEHNG J M, WACHS I E. Acidic properties of supported niobium oxide catalysts:An infrared spectroscopy investigation[J]. J Catal, 1992, 135(1):186-199. doi: 10.1016-0021-9517(92)90279-Q/
    [52] BARZETTI T, SELLI E, MOSCOTTI D, FORNI L. Pyridine and ammonia as probes for FT-IR analysis of solid acid catalysts[J]. J Chem Soc Faraday Trans, 1996, 92(8):1401-1407. doi: 10.1039/ft9969201401
    [53] SULTANA A, HANEDA M, FUJITANI T, HAMADA H. Influence of Al2O3 support on the activity of Ag/Al2O3 catalysts for SCR of NO with decane[J]. Catal Lett, 2007, 114(1/2):96-102.
    [54] CHMIELARZ L, PIWOWARSKA Z, KUŚTROWSKI P, WEGRZYN A, GIL B, KOWALCZYK A, DUDEK B, DZIEMBAJ R, MICHALIKET M. Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process[J]. Appl Clay Sci, 2011, 53(2):164-173. doi: 10.1016/j.clay.2010.12.009
    [55] LONG R Q, YANG R T. Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-Exchanged TiO2-pillared clay catalysts[J]. J Catal, 1999, 186(2):254-268. doi: 10.1006/jcat.1999.2558
    [56] EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine absorbed on solid acid catalysts[J]. J Catal, 1993, 141(2):347-354. doi: 10.1006/jcat.1993.1145
    [57] LI J H, ZHU Y Q, KE R, HAO J M. Improvement of catalytic activity and sulfur-resistance of Ag/TiO2-Al2O3 for NO reduction with propene under lean burn conditions[J]. Appl Catal B:Environ, 2008, 80(3/4):202-213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41d373430a14d628f325b34238946ecf
    [58] DATKA J, GIL B, KUBACKA A. Heterogeneity of OH groups in H-mordenites:Effect of dehydroxylation[J]. Zeolites, 1996, 17(5/6):428-433.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  479
  • HTML全文浏览量:  118
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-28
  • 修回日期:  2019-05-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-07-10

目录

    /

    返回文章
    返回