留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu-Fe-MgO/AlPO4-5对甲醇水蒸气重整制氢的催化性能研究

巢磊 武丹丹 李工

巢磊, 武丹丹, 李工. Cu-Fe-MgO/AlPO4-5对甲醇水蒸气重整制氢的催化性能研究[J]. 燃料化学学报(中英文), 2017, 45(9): 1105-1113.
引用本文: 巢磊, 武丹丹, 李工. Cu-Fe-MgO/AlPO4-5对甲醇水蒸气重整制氢的催化性能研究[J]. 燃料化学学报(中英文), 2017, 45(9): 1105-1113.
CHAO Lei, WU Dan-dan, LI Gong. Study on catalytic properties of Cu-Fe-MgO/AlPO4-5 for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1105-1113.
Citation: CHAO Lei, WU Dan-dan, LI Gong. Study on catalytic properties of Cu-Fe-MgO/AlPO4-5 for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1105-1113.

Cu-Fe-MgO/AlPO4-5对甲醇水蒸气重整制氢的催化性能研究

详细信息
  • 中图分类号: O643

Study on catalytic properties of Cu-Fe-MgO/AlPO4-5 for hydrogen production from steam reforming of methanol

More Information
  • 摘要: 以AlPO4-5分子筛为载体,采用浸渍法制备Cu-Fe-MgO/AlPO4-5催化剂,用于催化甲醇和水蒸气重整反应制氢气。采用XRD、N2吸附-脱附、H2-TPR、CO2-TPD和NH3-TPD等对催化剂进行表征。结果表明,加入Fe可以明显提高甲醇的转化率,但副产物二甲醚的选择性也增加,添加MgO对降低二甲醚具有明显的作用,但不能提高甲醇的转化率。AlPO4-5负载Cu、Fe和MgO的质量分数分别为15%、6%和1%时具有较高的催化活性,在反应温度300℃、水醇物质的量比为1.1:1和质量空速2.51 h-1的条件下,对甲醇的转化率为93.08%,二氧化碳和氢气的选择性分别为95.80%和96.93%,对副产物一氧化碳和二甲醚的选择性分别为1.70%和2.51%。表征结果表明,Cu-Fe-MgO/AlPO4-5同时含有弱酸弱碱和强酸强碱中心,适量的MgO增加了强碱中心的量,降低弱酸中心的强度,但对强酸中心影响不大。
  • 图  1  H2O/CH3OH物质的量比对催化活性的影响

    Figure  1  Effect of H2O/CH3OH molar ratio on catalytic performance

    a: sCO; b: sCH3OCH3; c: xCH3OH; d: sCO2; e: sH2

    图  2  质量空速对催化活性的影响

    Figure  2  Effect of WHSV on catalytic performance

    a: sCO; b: sCH3OCH3; c: xCH3OH; d: sCO2; e: sH2

    图  3  反应时间对催化剂活性的影响

    Figure  3  Effect of reaction time on catalytic performance

    a: sCO; b: sCH3OCH3; c: xCH3OH; d: sCO2; e: sH2

    图  4  催化剂的XRD谱图

    Figure  4  XRD patterns of the catalysts

    a: AlPO4-5; b: Cu(15)/AlPO4-5; c: Cu(15)-Fe(6)/AlPO4-5; d: Cu(15)-Fe(6)-MgO(1)/AlPO4-5

    图  5  催化剂的SEM照片

    Figure  5  SEM micrographs of the catalyst samples

    (a): AlPO4-5; (b): Cu(15)-Fe(6)-MgO(1)/AlPO4-5

    图  6  催化剂的H2-TPR谱图

    Figure  6  H2-TPR profiles of the catalysts

    a: Fe(6)/AlPO4-5; b: Cu(15)/AlPO4-5; c: Cu(15)-Fe(6)/AlPO4-5;d: Cu(15)-Fe(6)-MgO(1)/AlPO4-5

    图  7  催化剂的CO2-TPD谱图

    Figure  7  CO2-TPD profiles of the catalysts

    a: AlPO4-5; b: Cu(15)/AlPO4-5; c: Fe(6)/AlPO4-5; d: Cu(15)-Fe(6)/AlPO4-5; e: Cu(15)-Fe(6)-MgO(1)/AlPO4-5

    图  8  催化剂的NH3-TPD谱图

    Figure  8  NH3-TPD profiles of the catalysts

    a: AlPO4-5; b: Cu(15)/AlPO4-5; c: Fe(6)/AlPO4-5; d: Cu(15)-Fe(6)/AlPO4-5; e: Cu(15)-Fe(6)-MgO(1)/AlPO4-5

    表  1  铜负载量对催化活性的影响

    Table  1  Effect of Cu content on catalytic activity

    Catalyst t/℃ xCH3OH/% sCO2/% sH2/% sCO/% sCH3 OCH3 /%
    Cu(5)/AlPO4-5 260 16.44 87.76 89.92 3.23 9.01
    280 24.61 90.64 92.33 2.54 6.82
    300 42.88 88.84 90.34 2.25 8.91
    315 51.31 89.78 91.16 2.08 8.14
    Cu(10)/AlPO4-5 260 20.87 95.44 97.01 2.35 2.21
    280 26.41 92.51 93.60 1.63 5.86
    300 44.14 91.07 92.42 2.02 6.91
    315 52.33 90.49 91.99 2.25 7.26
    Cu(15)/AlPO4-5 260 23.44 95.93 97.01 1.63 2.44
    280 34.65 94.44 95.49 1.58 3.99
    300 55.16 92.16 93.42 1.88 5.96
    315 60.64 91.13 92.34 1.81 7.06
    Cu(20)/AlPO4-5 260 26.25 96.91 98.18 1.90 1.19
    280 35.45 96.31 96.95 0.96 2.73
    300 50.00 94.91 96.00 1.63 3.46
    315 55.26 93.30 94.55 2.39 4.32
    reaction conditions:WHSV=3.52 h-1, H2O/CH3OH(molar ratio)=1.1:1
    下载: 导出CSV

    表  2  铁负载量对催化活性的影响

    Table  2  Effect of Fe content on catalytic activity

    Catalyst t/℃ xCH3OH/% sCO2/% sH2/% sCO/% sCH3 OCH3 /%
    Cu(15)-Fe(2)/AlPO4-5 260 37.73 89.50 91.14 2.46 8.04
    280 52.89 89.25 90.17 1.38 9.37
    300 67.65 90.43 91.39 1.45 8.12
    315 72.13 87.83 89.68 2.78 9.39
    Cu(15)-Fe(5)/AlPO4-5 260 35.54 89.04 90.67 2.44 8.52
    280 75.31 91.43 92.55 1.68 6.89
    300 89.54 91.74 92.96 1.84 6.42
    315 87.39 86.39 89.12 4.09 9.52
    Cu(15)-Fe(7.5)/AlPO4-5 260 41.41 92.14 93.03 1.33 6.53
    280 64.48 91.43 92.25 1.23 7.34
    300 85.75 92.09 93.03 1.41 6.49
    315 89.25 87.64 90.49 4.27 8.09
    Cu(15)-Fe(10)/AlPO4-5 260 38.25 93.18 94.33 1.72 5.10
    280 62.59 90.62 91.60 1.48 7.90
    300 76.27 88.22 89.18 1.44 10.34
    315 84.06 86.13 87.61 2.21 11.66
    reaction conditions:WHSV=3.52 h-1, H2O/CH3OH(molar ratio)=1.1:1
    下载: 导出CSV

    表  3  氧化镁含量对催化活性的影响

    Table  3  Effect of MgO content on catalytic activity

    Catalyst t/℃ xCH3OH/% sCO2/% sH2/% sCO/% sCH3 OCH3 /%
    Cu(15)-Fe(5)-MgO(0.5)/AlPO4-5 260 48.66 94.91 96.30 2.08 3.00
    280 74.84 96.05 96.95 1.34 2.60
    300 78.88 93.51 94.67 1.74 4.75
    315 82.11 90.29 92.37 3.11 6.59
    Cu(15)-Fe(5)-MgO(1)/AlPO4-5 260 40.55 96.80 97.84 1.55 1.64
    280 71.46 94.75 95.18 1.64 3.61
    300 87.70 93.83 95.40 1.99 4.18
    315 89.43 90.04 91.36 2.35 7.62
    Cu(15)-Fe(5)-MgO(2)/AlPO4-5 260 27.14 96.34 97.70 2.05 1.61
    280 44.58 95.77 96.86 1.63 2.60
    300 61.78 94.85 95.94 1.64 3.51
    315 70.94 94.05 95.49 2.16 3.79
    Cu(15)-Fe(5)-MgO(4)/AlPO4-5 260 37.88 97.88 99.05 1.76 0.36
    280 63.79 97.29 98.48 1.78 0.92
    300 72.49 95.72 97.06 2.00 2.27
    315 74.69 95.21 96.67 2.19 2.60
    reaction conditions:WHSV=3.52 h-1, H2O/CH3OH(molar ratio)=1.1:1
    下载: 导出CSV

    表  4  L9(34) Cu-Fe-MgO/AlPO4-5催化甲醇水蒸气重整制氢反应的正交实验

    Table  4  Orthogonal experiment and analysis table of hydrogen production by steam reforming of methanol over Cu-Fe-MgO/AlPO4-5 catalyst

    Program Index
    Number A t/℃ B Cu/% C Fe/% D MgO/% xCH3OH /% sCO2/%
    1 1(280) 1(12) 3(7) 2(2) 61.43 95.95
    2 2(300) 1(12) 1(3) 1(1) 88.89 93.77
    3 3(310) 1(12) 2(5) 3(3) 69.67 91.07
    4 1(280) 2(15) 2(5) 1(1) 71.46 94.75
    5 2(300) 2(15) 3(7) 3(3) 76.40 95.11
    6 3(310) 2(15) 1(3) 2(2) 77.10 93.36
    7 1(280) 3(17) 1(3) 3(3) 40.76 97.83
    8 2(300) 3(17) 2(5) 2(2) 82.74 95.92
    9 3(310) 3(17) 3(7) 1(1) 91.54 92.42
    KA1, KB1 173.65,288.53 219.99,280.79 206.76,284.96 251.89,280.94 total=659.99 total=850.18
    KA2, KB2 248.03,284.80 224.97,283.22 223.87,281.74 221.28,285.23
    KA3, KB3 238.32,276.85 215.04,286.17 229.37,283.48 186.83,284.01
    kA1, kB1 57.88,96.18 73.33,93.60 68.92,94.99 83.96,93.65
    kA2, kB2 82.68,94.93 74.99,94.41 74.62,93.91 73.76,95.08
    kA3, kB3 79.44,92.28 71.68,95.39 76.46,94.49 62.28,94.67
    RA, RB 24.80,3.90 3.31,1.79 7.54,1.08 21.68,1.43
    reaction conditions:WHSV=3.52 h-1; H2O/CH3OH(molar ratio)=1.1:1; the subscript of K and k, A and B were defined as the index of methanol conversion and CO2 selectivity
    下载: 导出CSV

    表  5  反应温度对催化活性的影响

    Table  5  Effect of temperature on catalytic activity

    Catalyst t/℃ xCH3OH/% sCO2/% sH2/% sCO/% sCH3OCH3/%
    Cu(15)-Fe(6)-MgO(1)/AlPO4-5 260 65.58 96.21 95.89 1.02 2.77
    280 79.17 96.40 97.16 1.14 2.47
    300 93.08 95.80 96.93 1.70 2.51
    315 96.18 94.48 95.91 2.15 3.37
    reaction conditions:mcat=0.7 g, WHSV=2.51 h-1,H2O/CH3OH(molar ratio)=1.1:1
    下载: 导出CSV

    表  6  催化剂的孔结构参数

    Table  6  Pore structure parameters of the catalyst

    Catalyst ABET /(m2·g-1) Pore size d/nm
    AlPO4-5 133.3 6.1
    Cu/AlPO4-5 41.4 14.6
    Cu-Fe/AlPO4-5 39.7 13.7
    Cu-Fe-MgO/AlPO4-5 34.3 18.8
    下载: 导出CSV
  • [1] HU J, ZHANG Q, JING YLEE D. Photosynthetic hydrogen production from enzyme-hydrolyzed micro-grinded maize straws[J]. Int J Hydrogen Energy, 2016, 41(46):21665-21669. doi: 10.1016/j.ijhydene.2016.07.029
    [2] LEE Y L, CHI C F, LIAU S Y. CdS/CdSe Co-Sensitized TiO2 Photoelectrode for efficient hydrogen generation in a Photoelectrochemical Cell[J]. Chem Mater, 2016, 22(3):922-927. doi: 10.1021/cm901762h?src=recsys
    [3] MA Y, LIU B, OUYANG B, LI J. Production of hydrogen from water-gas shift reaction over Ru-[BMIM]BF4/ZnO catalyst[J]. Int J Hydrogen Energy, 2016, 42(7):4146-4154. http://www.whxb.pku.edu.cn/EN/abstract/abstract27635.shtml
    [4] BARRIOS C E, ALBITER E, JIMENEZ J M G Y, TIZNADO H, ROMOHERRERA J, ZANELLA R. Photocatalytic hydrogen production over titania modified by gold-Metal (palladium, nickel and cobalt) catalysts[J]. Int J Hydrogen Energy, 2016, 41(48):23287-23300. doi: 10.1016/j.ijhydene.2016.09.206
    [5] JIAO Y, ZHANG J, DU Y, LI F, LI C, LU C, LU J, WANG J, CHEN Y. Hydrogen production by catalytic steam reforming of hydrocarbon fuels over Ni/Ce-Al2O3, bifunctional catalysts:Effects of SrO addition[J]. Int J Hydrogen Energy, 2016, 41(31):13436-13447. doi: 10.1016/j.ijhydene.2016.05.178
    [6] LU J, LI X, HE S, HAN C, WAN G, LEI Y, CHEN R, LIU P, CHEN K, ZHANG L, LUO Y. Hydrogen production via methanol steam reforming over Ni-based catalysts:Influences of Lanthanum (La) addition and supports[J]. Int J Hydrogen Energy, 2016, 42(7):3647-3657.
    [7] NA Y K, YANG E H, LIM S S, JUNG J S, LEE J S, HONG G H, NOH Y S, LEE K Y, MOON D J. Hydrogen production by steam reforming of methane over mixed Ni/MgAl+CrFe3O4, catalysts[J]. Int J Hydrogen Energy, 2015, 40(35):11848-11854. doi: 10.1016/j.ijhydene.2015.06.104
    [8] WANG C, BOUCHER M, MING Y, SALTSBURG H, MARIA F. ZnO-modified zirconia as gold catalyst support for the low-temperature methanol steam reforming reaction[J]. Appl Catal B:Environ, 2014, 154(5):142-152.
    [9] 王艳华, 张敬畅, 徐恒泳.甲醇水蒸气重整制氢Pd/ZnO催化剂的研究[J].燃料化学学报, 2005, 33(4):391-395. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16582.shtml

    WANG Yan-hua, ZHANG Jing-chang, XU Heng-yong. Study of Pd/ZnO catalyst for hydrogen production from steam reforming of methanol[J]. J Fuel Chem Technol, 2005, 33(4):391-395. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16582.shtml
    [10] BANESHI J, HAGHIGHI M, JODEIRI N, ABDOUAHIFAR M, AJAMEIN H. Homogeneous precipitation synthesis of CuO-ZrO2 -CeO2 -Al2O3, nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications[J]. Energy Convers Manage, 2014, 87(9):928-937.
    [11] AZENHA C S R, MATEOS-PEDRERO C, QUEIRÓ S, CONCEPTION P, MENDES A.Innovative ZrO2-supported CuPd catalysts for the selective production of hydrogen from methanol steam reforming[J]. Appl Catal B:Environ, 2017, 203:400-407. doi: 10.1016/j.apcatb.2016.10.041
    [12] PONGSTABODEE S, MONYANON S, LUENGNARUEMITCHAI A. Hydrogen production via methanol steam reforming over Au/CuO, Au/CeO2, and Au/CuO-CeO2, catalysts prepared by deposition-precipitation[J].J Ind Eng Chem, 2012, 18(4):1272-1279. doi: 10.1016/j.jiec.2012.01.021
    [13] DESHMANE V G, ABROKWAH R Y, KUILA D. Synthesis of stable Cu-MCM-41 nanocatalysts for H2, production with high selectivity via steam reforming of methanol[J]. Int J Hydrogen Energy, 2015, 40(33):10439-10452. doi: 10.1016/j.ijhydene.2015.06.084
    [14] 李永红, 任杰, 孙予罕. Fe助剂对Cu/ZrO2甲醇水蒸气重整制氢催化剂的影响[J].燃料化学学报, 2002, 30(5):429-432. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX200206016.htm

    LI Yong-hong, REN Jie, SUN Yu-han. Effect of iron on Cu/ZrO2 catalysts in production of hydrogen from methanol steam reforming[J]. J Fuel Chem Technol, 2002, 30(5):429-432. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX200206016.htm
    [15] NA S, CHU Y, XIN S, WANG Q, YI X, FENG Z, MENG X, LIU X, DENG F, XIAO F. Insights of the Crystallization Process of Molecular Sieve AlPO4-5 Prepared by Solvent-Free Synthesis[J]. J Am Chem Soc, 2016, 138(19):6171-6176. doi: 10.1021/jacs.6b01200
    [16] XU R, ZHU G, YIN X, WAN X, QIU S. Epitaxial growth of highly-oriented AlPO4-5 molecular sieve films for microlaser systems[J]. J Mat Chem, 2006, 16(22):2200-2204. doi: 10.1039/b516305f
    [17] STOEGER J A, VEZIRI C M, PALOMINO M, CORMA A, KANELLOPOULOS N K, TSAPATSIS M, KARANIKOLOS G N. On stability and performance of highly c-oriented columnar AlPO4-5 and CoAPO-5 membranes[J]. Micropor Mesopor Mat, 2012, 147(1):286-294. doi: 10.1016/j.micromeso.2011.06.028
    [18] WEIβÖ, IHLEIN G, SCHVTH F. Synthesis of millimeter-sized perfect AlPO4-5 crystals[J]. Micropor Mesopor Mat, 2000, 35(99):617-620. https://core.ac.uk/display/14593198
    [19] SHOKRANI R, HAGHIGHI M, JODEIRI N, AJAMEIN H, ABDOLLAHIFAR M. Fuel cell grade hyd-rogen production via methanol steam reforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized viaurea-nitrates combustion method[J]. Int J Hydrogen Energy, 2014, 39(25):13141-13155. doi: 10.1016/j.ijhydene.2014.06.048
    [20] PARK J E, YIM S D, CHANG S K, PARK E D. Steam reforming of methanol over Cu/ZnO/ZrO2/Al2O3 catalyst. Int J Hydrogen Energy[J]. Int J Hydrogen Energy, 2014, 39(22):11517-11527. doi: 10.1016/j.ijhydene.2014.05.130
    [21] 黄媛媛, 巢磊, 李工, 丁嘉, 郭剑桥. Cu-ZrO2-CeO2/γ-Al2O3催化甲醇水蒸气重整制氢反应的性能研究[J].化工进展, 2017, 36(1):216-223. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH200201000.htm

    HUANG Yuan-yuan, CHAO Lei, LI Gong, DING Jia, GUO Jian-qiao. Performance of Cu-ZrO2 -CeO2/γ-Al2O3 catalysts for hydrogen production from steam reforming of methanol[J]. Chem Ind Eng Prog, 2017, 36(1):216-223. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH200201000.htm
    [22] DONGARE M K, SABDE D P, SHAIKH R A, KAMBLE K R, HEGDE S G. Synthesis, characterization and catalytic properties of ZrAPO-5[J]. Catal Today, 1999, 49(49):267-276. doi: 10.1023%2FA%3A1014176806483.pdf
    [23] 徐杰, 王文祥. CuO-Fe2O3体系的相互作用[J].催化学报, 1992, 13(6):420-424. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA199206002.htm

    XU Jie, WANG Wen-xiang. The interaction in CuO-Fe2O3 system[J]. Chin J Catal, 1992, 13(6):420-424. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA199206002.htm
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  87
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-24
  • 修回日期:  2017-06-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-09-10

目录

    /

    返回文章
    返回