留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲苯在多级孔丝光沸石上的吸附平衡和吸附动力学

张辉 杨元涛 马静红 李瑞丰

张辉, 杨元涛, 马静红, 李瑞丰. 甲苯在多级孔丝光沸石上的吸附平衡和吸附动力学[J]. 燃料化学学报(中英文), 2018, 46(6): 710-716.
引用本文: 张辉, 杨元涛, 马静红, 李瑞丰. 甲苯在多级孔丝光沸石上的吸附平衡和吸附动力学[J]. 燃料化学学报(中英文), 2018, 46(6): 710-716.
ZHANG Hui, YANG Yuan-tao, MA Jing-hong, LI Rui-feng. Adsorption equilibrium and kinetics of toluene on hierarchical mordenite[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 710-716.
Citation: ZHANG Hui, YANG Yuan-tao, MA Jing-hong, LI Rui-feng. Adsorption equilibrium and kinetics of toluene on hierarchical mordenite[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 710-716.

甲苯在多级孔丝光沸石上的吸附平衡和吸附动力学

基金项目: 

国家自然科学基金 U1510127

详细信息
  • 中图分类号: O647

Adsorption equilibrium and kinetics of toluene on hierarchical mordenite

Funds: 

National Nature Science Foundation of China U1510127

More Information
  • 摘要: 为了考察多级孔丝光沸石中介孔的存在对丝光沸石吸附平衡和动力学的影响,选择甲苯分子作为探针分子,对其在具有不同介孔孔隙度的多级孔丝光沸石上的吸附等温线和吸附动力学曲线进行了测试。结果表明,甲苯在多级孔丝光沸石上的吸附等温线可以很好地用双位Toth吸附模型进行描述,由拟合参数以及亨利常数(KH)和初始吸附热(Qst)的计算得知,相对于微孔丝光沸石,介孔的引入增大了甲苯在丝光沸石内的吸附量,但减弱了甲苯与沸石表面的相互作用力;另外,甲苯在多级孔沸石表现出高的吸附速率,并随介孔孔隙度的增加而增大,反映了沸石内介孔的存在可有效促进沸石的传质能力。
  • 图  1  不同温度下甲苯在丝光沸石上的吸附等温线

    Figure  1  Adsorption isotherms of toluene on mordenite at different temperatures

    图  2  压力在0.15-0.20 kPa时甲苯在丝光沸石上的吸附动力学曲线

    Figure  2  Adsorption kinetics of toluene on mordenite under pressure range of 0.15-0.20 kPa

    图  3  甲苯在丝光沸石上的吸附速率k和丝光沸石介孔体积vmeso之间的关系

    Figure  3  Relationship between the adsorption rate constant (k) of toluene on mordenite and the mesoporous volume (vmeso) of mordenite

    表  1  甲苯在丝光沸石上的吸附等温线双位Toth模型拟合参数

    Table  1  Dual-site Toth model fitting parameters of toluene on mordenites

    Parameter MOR-0 MOR-1 MOR-2 MOR-3
    qs1, 0 /(mmol·g-1) 0.74 0.70 0.68 0.66
    χ1 1.41 0.68 0.13 0.56
    b1, 0/(kPa-1) 1230 1070 840 760
    Q1/(kJ·mol-1) 15.87 12.01 9.52 8.09
    t1, 0 0.53 0.88 0.46 0.51
    α1 1.71 0.88 0.79 1.31
    qs2, 0/(mmol·g-1) 0.02 1.11 1.67 1.92
    χ2 0.01 0.31 4.85 7.98
    b2, 0/(kPa-1) 1.5 0.7 0.4 0.3
    Q2/(kJ·mol-1) 13.71 12.82 7.41 4.67
    t2, 0 0.68 0.46 0.63 1.37
    α2 0.65 0.10 0.01 0.24
    下载: 导出CSV

    表  2  甲苯在丝光沸石上的亨利常数和初始吸附热

    Table  2  Henry's constants and initial heats of adsorption for toluene on mordenite samples

    Sample T/K KH/(mmol·g-1·kPa-1) Qst/(kJ·mol-1)
    MOR-0 293 4.02×105 82.7
    308 1.46×105
    323 5.96×104
    MOR-1 293 2.99×104 67.8
    308 1.62×104
    323 6.60×103
    MOR-2 293 4.16×103 57.4
    308 2.28×103
    323 1.25×103
    MOR-3 293 1.64×103 46.4
    308 0.86×103
    323 0.61×103
    下载: 导出CSV
  • [1] VOS A M, ROZANSKA X, SCHOONHEYDT R A, VAN SANTEN R A, HUTSCHKA F, HAFNER J. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite[J]. J Am Chem Soc, 2001, 123(12):2799-2809. doi: 10.1021/ja001981i
    [2] PEREGO C, INGALLINA P. Combining alkylation and transalkylation for alkylaromatic production[J]. Green Chem, 2004, 6(6):274-279. doi: 10.1039/b403277m
    [3] KORTUNOV P, VASENKOV S, KÄRGER J, VALIULLIN R, GOTTSCHALK P, FÉELÍA M, PEREZ M, STÖCKER M, DRESCHER B, MCELHINEY G, BERGER C, GLÄSER R, WEITKAMP J. The role of mesopores in intracrystalline transport in USY zeolite:PFG NMR diffusion study on various length scales[J]. J Am Chem Soc, 2005, 127(37):13055-13059. doi: 10.1021/ja053134r
    [4] MOLINER M, ROMAN-LESHKOV Y, DAVIS M E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proc Natl Acad Sci USA, 2010, 107(14):6164-6168. doi: 10.1073/pnas.1002358107
    [5] MARCILLY C R. Where and how shape selectivity of molecular sieves operates in refining and petrochemistry catalytic processes[J]. Top Catal, 2000, 13(4):357-366. doi: 10.1023/A:1009007021975
    [6] CHEN N Y, DEGNAN T F, SMITH C M. Molecular transport and reaction in zeolites:Design and application of shape selective catalysts[J]. Z Phys Chem, 1995, 191(Part_2):282. http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471185485.html
    [7] RUTHVEN D M. Diffusion in zeolites and other microporous solids[J]. Z Phys Chem, 1992, 92(Part_2):269-270.
    [8] GUISNET M, MAGNOUX P. Coking and deactivation of zeolites:Influence of the Pore Structure[J]. Appl Catal, 1989, 54(1):1-27. doi: 10.1016/S0166-9834(00)82350-7
    [9] PEREZ R J, CHRISTENSEN C H, EGEBLAD K, CHRISTENSEN C H, GROEN J C. Enhanced utilization of microporous crystals in catalysis by advances in materials design[J]. Chem Soc Rev, 2008, 37(11):2530-2542. doi: 10.1039/b809030k
    [10] OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity[J]. Angew Chem, 2012, 51(24):5810-5831. doi: 10.1002/anie.201103657
    [11] GROEN J C, ZHU W, BROUWER S, HUYNINK S J, KAPTEIJN F, MOULIJN A J A, PÉREZRAMÍREZ J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. J Am Chem Soc, 2007, 129(2):355-360. doi: 10.1021/ja065737o
    [12] JANSSEN A H. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catal Rev, 2003, 45(2):297-319. doi: 10.1081/CR-120023908
    [13] KIM J, CHOI M, RYOO R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. J Catal, 2010, 269(1):219-228. doi: 10.1016/j.jcat.2009.11.009
    [14] HARTMANN M. Hierarchical zeolites:A proven strategy to combine shape selectivity with efficient mass transport[J]. Cheminform, 2005, 36(3):5880-5882.
    [15] 王海彦, 宋盼盼, 王钰佳.多级孔Hβ沸石对NiWP/Hβ-Al2O3催化剂柴油加氢性能的影响[J].燃料化学学报, 2016, 44(4):470-476. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18815.shtml

    WANG Hai-yan, SONG Pan-pan, WANG Yu-jia. Influence of hierarchically mesoporous Hβ zeolite on the performance of NiWP/Hβ-Al2O3 catalysts in diesel oil hydro-upgrading[J]. J Fuel Chem Technol, 2016, 44(4):470-476. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18815.shtml
    [16] BAERLOCHER C, MEIER W M, OLSON D H. Atlas of Zeolite Framework Types[M]. Hodder and Stoughton:Elsevier, 1922.
    [17] VAN DONK S, BROERSMA A, GIJZEMAN O L J, VAN BOKHOVEN J A, BITTER J H, DE JONG K P. Combined diffusion, adsorption, and reaction studies of n-hexane hydroisomerization over Pt/H-mordenite in an oscillating microbalance[J]. J Catal, 2001, 204(2):272-280. doi: 10.1006/jcat.2001.3393
    [18] SCHMITZ A D, SONG C. Shape-selective isopropylation of naphthalene. Reactivity of 2, 6-diisopropylnaphthalene on dealuminated mordenites[J]. Catal Today, 1996, 31(1):19-25.
    [19] LEI G D, CARVILL B T, SACHTLER W M H. Single file diffusion in mordenite channels:Neopentane conversion and H/D exchange as catalytic probes[J]. Appl Catal A:Gen, 1996, 142(2):347-359. doi: 10.1016/0926-860X(96)00062-2
    [20] DEJAIFVE P, AUROUX A, GRAVELLE P C, VÉDRINE J C, GABELICA Z, DEROUANE E G. Methanol conversion on acidic ZSM-5, offretite, and mordenite zeolites:A comparative study of the formation and stability of coke deposits[J]. J Catal, 1981, 70(1):123-136. doi: 10.1016/0021-9517(81)90322-5
    [21] GROEN J C, SANO T, MOULIJN J A, PÉREZ-RAMÍREZ J. Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions[J]. J Catal, 2007, 251(1):21-27. doi: 10.1016/j.jcat.2007.07.020
    [22] SAXENA S K, VISWANADHAM N. Enhanced catalytic properties of mesoporous mordenite for benzylation of benzene with benzyl alcohol[J]. Appl Surf Sci, 2017, 392:384-390. doi: 10.1016/j.apsusc.2016.09.062
    [23] ORDOMSKY V V, IVANOVA I I, KNYAZEVA E E, YUSCHENKO V V, ZAIKOVSKⅡ V I. Cumene disproportionation over micro/mesoporous catalysts obtained by recrystallization of mordenite[J]. J Catal, 2012, 295(11):207-216.
    [24] DAVIS M E, DAVIS R J. Fundamentals of Chemical Reaction Engineering[M]. New York:McGraw-Hill Higher Education, 2012.
    [25] VOS A M, ROZANSKA X, SCHOONHEYDT R A, SANTEN R A V, HUTSCHKA F, HAFNER J. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite[J]. J Am Chem Soc, 2001, 123(12):2799-2809. doi: 10.1021/ja001981i
    [26] OLSON D H, HAAG W O. Structure-Selectivity Relationship in Xylene Isomerization and Selective Toluene Disproportionation[M]. New York:ACS Publications, 1984.
    [27] ČEJKA J, WICHTERLOVA B. Acid-catalyzed synthesis of mono-and dialkyl benzenes over zeolites:Active sites, zeolite topology, and reaction mechanisms[J]. Catal Rev, 2002, 44(3):375-421.
    [28] DAI G, HAO W M, XIAO H, MA J H, LI R F. Hierarchical mordenite zeolite nano-rods bundles favourable to bulky molecules[J]. Chem Phys Lett, 2017, 686(31):111-115.
    [29] SONG A, MA J, XU D, LI R. Adsorption and diffusion of xylene Isomers on mesoporous beta zeolite[J]. Catalysts, 2015, 5(4):2098-2114. doi: 10.3390/catal5042098
    [30] WEISS R F. Carbon dioxide in water and seawater:The solubility of a non-ideal gas[J]. Mar Chem, 1974, 2(3):203-215. doi: 10.1016/0304-4203(74)90015-2
    [31] ZHAO H, MA J H, ZHANG Q Q, LIU Z P, LI R F. Adsorption and diffusion of n-heptane and toluene over mesoporous ZSM-5 zeolites[J]. Ind Eng Chem Res, 2014, 53(35):13810-13819. doi: 10.1021/ie502496v
    [32] XU D, MA J H, SONG A X, LIU Z P, LI R F. Availability and interconnectivity of pores in mesostructured ZSM-5 zeolites by the adsorption and diffusion of mesitylene[J]. Adsorption, 2016, 22(8):1083-1090. doi: 10.1007/s10450-016-9830-9
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  53
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-05
  • 修回日期:  2018-04-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-06-10

目录

    /

    返回文章
    返回