留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZSM-5分子筛骨架铝落位对甲醇转化制芳烃催化性能影响

张立伟 张怀科 陈志强 刘粟侥 任杰

张立伟, 张怀科, 陈志强, 刘粟侥, 任杰. ZSM-5分子筛骨架铝落位对甲醇转化制芳烃催化性能影响[J]. 燃料化学学报(中英文), 2019, 47(12): 1468-1475.
引用本文: 张立伟, 张怀科, 陈志强, 刘粟侥, 任杰. ZSM-5分子筛骨架铝落位对甲醇转化制芳烃催化性能影响[J]. 燃料化学学报(中英文), 2019, 47(12): 1468-1475.
ZHANG Li-wei, ZHANG Huai-ke, CHEN Zhi-qiang, LIU Su-yao, REN Jie. Effect of framework Al siting on catalytic performance in methanol to aromatics over ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1468-1475.
Citation: ZHANG Li-wei, ZHANG Huai-ke, CHEN Zhi-qiang, LIU Su-yao, REN Jie. Effect of framework Al siting on catalytic performance in methanol to aromatics over ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1468-1475.

ZSM-5分子筛骨架铝落位对甲醇转化制芳烃催化性能影响

基金项目: 

国家自然科学基金 21902171

详细信息
  • 中图分类号: O643

Effect of framework Al siting on catalytic performance in methanol to aromatics over ZSM-5 zeolites

Funds: 

the National Natural Science Foundation of China 21902171

More Information
  • 摘要: 采用水热合成法,在合成过程中通过添加矿化剂、尿素和改变硅源,制备了不同骨架铝落位的ZSM-5分子筛。通过SEM、XRD、BET、XRF、MAS NMR、NH3-TPD和Py-FTIR等表征手段对分子筛的形貌、织构、骨架铝落位和酸性进行了系统研究,同时考察了不同ZSM-5分子筛催化剂甲醇制芳烃的催化性能。研究结果表明,制备的ZSM-5分子筛均具有结晶度高和形貌均一等特点,但在骨架铝落位和酸性方面存在显著差异。椭球状ZSM-5分子筛的骨架铝主要分布于直通孔道或正弦孔道中,并表现出较多的酸性位。块状分子筛中骨架铝主要落位在孔道交叉处,且具有较低的强酸量。在甲醇制芳烃反应中,骨架铝主要位于直通或正弦孔道并表现出较多酸性位的椭球状ZSM-5分子筛催化剂具有较高的活性稳定性和芳烃选择性。
  • 图  1  不同ZSM-5分子筛样品的XRD谱图

    Figure  1  XRD patterns of different ZSM-5 samples

    图  2  HA (a)、HB (b)和HC ((c)、(d))分子筛样品的SEM照片

    Figure  2  SEM images of HA (a), HB (b) and HC ((c) and (d))

    图  3  不同ZSM-5分子筛样品的N2吸附-脱附曲线

    Figure  3  N2 adsorption-desorption isotherms of different ZSM-5 samples

    图  4  不同ZSM-5分子筛样品的27Al MAS NMR谱图

    Figure  4  27Al MAS NMR spectra of different ZSM-5 zeolite samples

    图  5  不同ZSM-5分子筛样品的NH3-TPD谱图

    Figure  5  NH3-TPD spectra of different ZSM-5 zeolite samples

    图  6  不同ZSM-5分子筛200 ℃ (a)和350 ℃ (b)的Py-FTIR谱图

    Figure  6  Py-FTIR spectra of different ZSM-5 zeolite samples at 200 ℃ (a) and 350 ℃ (b)

    图  7  不同ZSM-5分子筛催化剂上甲醇转化率随反应时间的变化

    Figure  7  Change of methanol conversion with reaction time over different ZSM-5 zeolite catalysts

    图  8  不同ZSM-5分子筛催化剂上芳烃选择性随反应时间的变化

    Figure  8  Change of aromatics selectivity with reaction time over different ZSM-5 zeolite catalysts

    图  9  ZSM-5分子筛上甲醇转化制芳烃反应路径示意图

    Figure  9  MTA reaction routes over ZSM-5 zeolites catalysts

    表  1  不同形貌ZSM-5分子筛的硅铝比和织构性质

    Table  1  Si/Al ratios and textural properties of different ZSM-5 samples

    Sample Si/Ala Relative crystallinity /%b BET surface area A/(m2·g-1)c Microporous area A/(m2·g-1)c External surface area A/(m2·g-1)c
    HA 43.16 94 393.85 318.30 75.55
    HB 44.78 100 378.85 314.80 64.04
    HC 41.06 91 403.05 334.80 68.25
    a: determined by XRF; b: calculated from XRD patterns; c: obtained by N2-adsorption at -196 ℃
    下载: 导出CSV

    表  2  不同ZSM-5分子筛样品中的骨架铝落位

    Table  2  Framework Al (AlF) siting of different ZSM-5 zeolite samples

    Sample AlF distribution /%
    Al(54) Al(56)
    HA 15.96 27.65
    HB 32.63 19.63
    HC 38.63 12.19
    下载: 导出CSV

    表  3  NH3-TPD和Py-FTIR表征的不同ZSM-5分子筛的酸性质

    Table  3  Acidic properties of various ZSM-5 zeolites measured by NH3-TPD and Py-FTIR

    Sample Acidity /(μmol·g-1) a Acidity /(μmolPy·g-1) b
    weak strong Brønsted Lewis
    200 ℃ 350 ℃ 200 ℃ 350 ℃
    HA 166.22 171.97 155.49 138.11 13.38 9.15
    HB 149.54 185.73 148.23 131.04 10.90 8.11
    HC 154.93 149.72 143.62 118.59 13.57 12.80
    a: determined by NH3-TPD; b: calculated from Py-FTIR spectra
    下载: 导出CSV

    表  4  不同ZSM-5分子筛催化剂上产物分布

    Table  4  Product distribution of different ZSM-5 zeolite catalysts

    Catalyst Product distribution /% a
    CH4 C2-5- C2-5= C5+ non-aromatics BTEX b C9+ aromatics
    HA 1.20 34.69 5.69 21.10 23.33 13.99
    HB 2.08 38.97 5.74 23.12 19.86 10.23
    HC 2.81 35.35 6.31 27.69 14.66 13.18
    a: analyzed at time-on-stream of 12 h; b: benzene, toluene, ethylbenzene and xylene
    下载: 导出CSV
  • [1] HOLLANDER M A D, WISSNK M, MAKKEE M. Gasoline conversion:Reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts[J]. Appl Catal A:Gen, 2002, 223(1/2):85-102. http://cn.bing.com/academic/profile?id=468d9b40f3549da1246e4060b6216b29&encoded=0&v=paper_preview&mkt=zh-cn
    [2] YANG L Z, LIU Z Y, LIU Z, PENG W Y, LIU Y Q, LIU C G. Correlation between H-ZSM-5 crystal size and catalytic performance in the methanol-to-aromatics reaction[J]. Chin J Catal, 2017, 38(4):683-690. doi: 10.1016/S1872-2067(17)62791-8
    [3] HU H, ZHANG Q, CEN J. Catalytic activity of Pt modified hierarchical ZSM-5 catalysts in benzene alkylation with methanol[J]. Catal Lett, 2015, 145(2):715-722. doi: 10.1007/s10562-014-1458-3
    [4] SOHN J R, DECANIO S J, FRITZ P O. Acid catalysis by dealuminated zeolite Y. 2. The roles of aluminum[J]. J Phys Chem, 1986, 90/20(20):4847-4851. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=k1txISpY6JfiU22g8t1HQfex2CW4X35Rd/qyCufUqJI=
    [5] MACHT J, CARR R T, IGLESIA E. Consequences of acid strength for isomerization and elimination catalysis on solid acids[J]. J Am Chem Soc, 2009, 131(18):6554-6565. doi: 10.1021/ja900829x
    [6] DEDECEK J, BALGOV A, VENDUL A, PASHKOVA V. Synthesis of ZSM-5 zeolites with defined distribution of Al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution[J]. Chem Mater, 2012, 24(16):3231-3239. doi: 10.1021/cm301629a
    [7] PARK S, BILIGETU T, WANG Y, NISHITOBA T, KONDO J W, YOKOI T. Acidic and catalytic properties of ZSM-5 zeolites with different Al distributions[J]. J Catal, 2017, 353:1-10. doi: 10.1016/j.jcat.2017.06.026
    [8] BILIGETU T, WANG Y, NISHITOBA T, YOKOI T. Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols[J]. Catal Today, 2018, 303:1-10. doi: 10.1016/j.cattod.2017.12.032
    [9] YOKOI T, MOCHIZUKI H, NAMB A, KONDO J N, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J Phys Chem C, 2015, 119:15303-15315. doi: 10.1021/acs.jpcc.5b03289
    [10] KIM J H, NAMBA S, YASHIMA T. Shape selectivity of ZSM-5 type zeolite for alkylation of ethylbenzene and ethanol[J]. Bull Chem Soc Jpn, 1988, 61:1051-1055. doi: 10.1246/bcsj.61.1051
    [11] LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over HZSM5 zeolite:Reaction pathway is related to the framework aluminum siting[J]. ACS Catal, 2016, 6(11):7311-7325. doi: 10.1021/acscatal.6b01771
    [12] NA J D, LIU G Z, ZHOU T Y, DING G C, HU S L, WANG L. Synthesis and catalytic performance of ZSM-5/MCM-41 zeolites with varying mesopore size by surfactant-directed recrystallization[J]. Catal Lett, 2013, 143(3):267-275. doi: 10.1007/s10562-013-0963-0
    [13] GREGG S J, SING K S W. Adsirption, Surface Area and Porosity[M]. London:Academic Press, 1982, 154.
    [14] AGUADO J, SERRANO D P, ESCOLA J M, RODRIGUEZ J M. Low temperature synthesis and properties of ZSM-5 aggregates formed by ultra-small nanocrystals[J]. Microporous Mesoporous Mater, 2004, 75(1):41-49. http://cn.bing.com/academic/profile?id=cbc586f5512d10772bbad06fa686ac15&encoded=0&v=paper_preview&mkt=zh-cn
    [15] GOBIN O C, REITMEIER S J, JENTYS A, LERCHER J A. Comparison of the transport of aromatic compounds in small and large MFI particles[J]. J Phys Chem C, 2009, 113(47):20435-20444. doi: 10.1021/jp907444c
    [16] WU G, WU W, WANG X, ZAN W, WANG W, LI C. Nanosized ZSM-5 zeolites:Seed-induced synthesis and the relation between the physicochemical properties and the catalytic performance in the alkylation of naphthalene[J]. Microporous Mesoporous Mater, 2013, 180(6):187-195. http://www.sciencedirect.com/science/article/pii/S1387181112006609
    [17] SKLENAK S, DĚEDEČCEK J, LI C. Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations[J]. Phys Chem Chem Phys, 2009, 11(8):1237-1247. doi: 10.1039/B807755J
    [18] YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-State NMR technique and catalytic properties[J]. J Phys Chem C, 2015, 119(27):15303-15315. doi: 10.1021/acs.jpcc.5b03289
    [19] LIU S Y, REN J, ZHU S J, ZHANG H K, LV E J, XU J, LI Y W. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high ndodecane isomerization performance[J]. J Catal, 2015, 330:485-496. doi: 10.1016/j.jcat.2015.07.027
    [20] YANG G H, TSUBAKI N, SHAMOTO J, YONEYAMA Y, ZHANG Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis[J]. J Am Chem Soc, 2010, 132(23):8129-8136. doi: 10.1021/ja101882a
    [21] KUBELKOVA L, NOVAKOVA J. Reactivity of surface species on zeolites in methanol conversion[J]. J Catal, 1990, 124:441-450. doi: 10.1016/0021-9517(90)90191-L
    [22] WANG K, DONG M, LI J F, LIU P, ZHANG K, WANG J G, FAN W B. Facile fabrication of ZSM-5 zeolite hollow spheres for catalytic conversion of methanol to aromatics[J]. Catal Sci Technol, 2017, 7:560-564. doi: 10.1039/C6CY02476A
    [23] BLASZKOWSKI S, SANTEN R. The mechanism of dimethyl ether formation from methanol catalyzed by zeolite protons[J]. J Am Chem Soc, 1996, 118(21):5152-5153. doi: 10.1021/ja954323k
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  111
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-23
  • 修回日期:  2019-10-13
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-12-10

目录

    /

    返回文章
    返回