留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同灰化温度下生物质混煤灰的烧结特性研究

景妮洁 祝红梅 李和平

景妮洁, 祝红梅, 李和平. 不同灰化温度下生物质混煤灰的烧结特性研究[J]. 燃料化学学报(中英文), 2017, 45(3): 289-294.
引用本文: 景妮洁, 祝红梅, 李和平. 不同灰化温度下生物质混煤灰的烧结特性研究[J]. 燃料化学学报(中英文), 2017, 45(3): 289-294.
JING Ni-jie, ZHU Hong-mei, LI He-ping. Effect of different ashing temperatures on the sintering characteristics of ash from combustion of coal and biomass blends[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 289-294.
Citation: JING Ni-jie, ZHU Hong-mei, LI He-ping. Effect of different ashing temperatures on the sintering characteristics of ash from combustion of coal and biomass blends[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 289-294.

不同灰化温度下生物质混煤灰的烧结特性研究

基金项目: 

浙江省自然科学基金 LQ14E060004sd

详细信息
    通讯作者:

    景妮洁, Tel:0571-86919133, E-mail:njjing@hdu.edu.cn

  • 中图分类号: TQ171.6+25.2

Effect of different ashing temperatures on the sintering characteristics of ash from combustion of coal and biomass blends

Funds: 

Zhejiang Provincial Natural Science Foundation of China LQ14E060004sd

  • 摘要: 选取晋城无烟煤和麦秆作为研究对象,利用压差法烧结温度测定装置测量不同灰化温度下煤和麦秆混合灰的烧结温度,再利用SEM-EDS以及XRD对灰样进行烧结特性分析。结果表明,不论灰化温度高低,随着麦秆的添加,煤和麦秆混合灰的烧结温度都呈现降低趋势,其降低幅度略有差别。灰化温度较低时,煤和麦秆混合灰的烧结温度低于灰化温度较高情况下混合灰的烧结温度。SEM-EDS分析表明,低温灰化得到的样品中出现较多不规则的纤维结构;较高温度下获得的灰样中出现较多致密的球状颗粒,这表明矿物质发生熔融形成球状颗粒。XRD分析表明,低温灰化烧结后的煤和麦秆混合灰样中因含有较多的含钾等碱金属系助融矿物质,导致混合灰样的烧结温度降低。然而,像钙长石等含钙矿物质本身具有较高的熔点,因此,在1 100℃时混合灰样具有较高的烧结温度。
  • 图  1  不同灰化温度下晋城煤与麦秆混合灰的烧结温度

    Figure  1  Sintering temperatures of coal and biomass blend ashes at different ashing temperatures

    图  2  815 ℃下晋城煤和麦秆混合灰样的SEM照片及EDS分析

    Figure  2  SEM images and EDS of the ashes of Jincheng (JC) coal and wheat straw at 815 ℃

    图  3  950 ℃下晋城煤和麦秆混合灰样的SEM照片及EDS分析

    Figure  3  SEM images and EDS of the ashes of Jincheng (JC) coal and wheat straw at 950 ℃

    图  4  1 100 ℃下晋城煤和麦秆混合灰样的SEM照片及EDS分析

    Figure  4  SEM images and EDS of the ashes of Jincheng (JC) coal and wheat straw at 1 100 ℃

    图  5  不同灰化温度下晋城煤灰的XRD谱图

    Figure  5  XRD patterns of Jincheng coal ash under different ashing temperatures

    图  6  不同灰化温度下晋城煤与10%麦秆混合灰的XRD谱图

    Figure  6  XRD patterns of ash from blends of Jincheng coal with 10% wheat straw under different ashing temperatures

    表  1  样品的工业分析、元素分析和灰成分分析

    Table  1  Proximate and ultimate analysis and ash compositions of Jincheng coal and straw

    Proximate analysis wad/% Ultimate analysis wad/%
    M V A FC C H O N S
    Jincheng coal 2.23 8.46 20.1 69.21 65.81 3.25 6.72 0.94 0.95
    Wheat straw 9.89 68.39 5.22 16.5 45.55 5.7 46.53 1.32 0.15
    Ash composition w/%
    SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O SO3 TiO2 P2O5 Cl
    Jincheng coal 52.5 29 4.44 5.18 1.12 1.25 1.87 1.97 1.05 0.254 -
    Wheat straw 30.09 1.67 1.01 4.8 5.09 13.24 32.6 3.45 0.15 7.72 1.97
    下载: 导出CSV
  • [1] 唐建业, 陈雪莉, 乔治, 刘爱彬, 王辅臣.添加秸秆类生物质对长平煤灰熔融特性的影响[J].化工学报, 2014, 65(12):4948-4957. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201412041.htm

    TANG Jian-ye, CHEN Xue-li, QIAO Zhi, LIU Ai-bin, WANG Fu-chen. Influence of agro-biomass addition on Changping coal ash melting characteristics[J]. CIESC J, 2014, 65(12):4948-4957. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201412041.htm
    [2] HAYKIRI-ACMA H, YAMAN S, KUCUKBAYRAK S. Effect of biomass on temperatures of sintering and initial deformation of lignite ash[J]. Fuel, 2010, 89(10):3063-3068. doi: 10.1016/j.fuel.2010.06.003
    [3] ZHENG Y J, JENSEN P A, JENSEN A D, SANDER B, JUNKER H. Ash transformation during co-firing coal and straw[J]. Fuel, 2007, 86(7/8):1008-1020.
    [4] KAZAGIC A, SMAJEVIC I. The research here presented therefore represents a precondition for the adoption of clean coal technologies[J]. Energy, 2007, 32:2006-2016. doi: 10.1016/j.energy.2007.03.007
    [5] VASSILEV S V, BAXTER D, ANDERSEN L K, VASSILEVAC G. An overview of the chemical composition of biomass[J]. Fuel, 2010, 89(5):913-933. doi: 10.1016/j.fuel.2009.10.022
    [6] LUAN C, YOU C F, ZHANG D K. Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace[J]. Energy, 2014, 69:562-570. doi: 10.1016/j.energy.2014.03.050
    [7] LIU H F, XU M H, ZHANG Q, ZHAO H, LI W F. Effective utilization of water hyacinth resource by co-gasification with coal:rheological properties and ash fusion temperatures of hyacinth-coal slurry[J]. Ind Eng Chem Res, 2013, 52(46):16436-16443. doi: 10.1021/ie402163c
    [8] FANG X, JIA L. Experimental study on ash fusion characteristics of biomass[J]. Bioresour Technol, 2012, 104:769-774. doi: 10.1016/j.biortech.2011.11.055
    [9] SAMI M, ANNAMALAI K, WOOLDRIDGE M. Co-firing of coal and biomass fuel blends[J]. Prog Energy Combust Sci, 2001, 27:171-214. doi: 10.1016/S0360-1285(00)00020-4
    [10] DEMIRBAS A. Combustion characteristics of different biomass fuels[J]. Prog Energy Combust Sci, 2004, 30(2):219-230. doi: 10.1016/j.pecs.2003.10.004
    [11] KHAN A A, JONG W, JANSENS P J, SPLIETHOFF H. Biomass combustion in fluidized bed boilers:Potential problems and remedies[J]. Fuel Process Technol, 2009, 90(1):21-50. doi: 10.1016/j.fuproc.2008.07.012
    [12] GAYAN P, ADANEZ J, LUIS F, DIEGO D, GARCI'A-LABIANO F, CABANILLAS A, BAHILLO A, AHO M, VEIJONEN K. Circulating fluidised bed co-combustion of coal and biomass[J]. Fuel, 2004, 83(3):277-286. doi: 10.1016/j.fuel.2003.08.003
    [13] DEMIRBAS A. Sustainable cofiring of biomass with coal[J]. Energy Convers Manage, 2003, 44(9):1465-1479. doi: 10.1016/S0196-8904(02)00144-9
    [14] KUPKA T, MANCINI M, IRMER M, WEBER R. Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel[J]. Fuel, 2008, 87(12):2824-2837. doi: 10.1016/j.fuel.2008.01.024
    [15] LIN W G, DAM-JOHANSEN K, FRANDSEN F. Agglomeration in bio-fuel fired fluidized bed combustors[J]. Chem Eng J, 2003, 96(1/3):171-185. https://www.researchgate.net/publication/223943234_Agglomeration_in_Bio-Fuel_Fired_Fluidized_Bed_Combustors
    [16] VAMVUKA D, KAKARAS E. Ash properties and environmental impact of various biomass and coal fuels and their blends[J]. Fuel Process Technol, 2011, 92(3):570-581. doi: 10.1016/j.fuproc.2010.11.013
    [17] TEIXEIRA P, LOPES H, GULYURTLU I, LAPA N, ABELHA P. Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed[J]. Biomass Bioenergy, 2012, 39:192-203. doi: 10.1016/j.biombioe.2012.01.010
    [18] GOGEBAKAN Z, GOGEBAKAN G, SELCUK N, SELCUK E. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite[J]. Bioresour Technol, 2009, 100(2):1033-1036. doi: 10.1016/j.biortech.2008.07.037
    [19] JING N J, WANG Q H, LUO Z, CEN K F. Effect of different reaction atmospheres on the sintering temperature of Jincheng coal ash under pressurized conditions[J]. Fuel, 2011, 90(8):2645-2651. doi: 10.1016/j.fuel.2011.04.013
    [20] LI J B, ZHU M M, ZHANG Z Z, ZHANG, K, SHEN, G Q, ZHANG D K. Characterisation of ash deposits on a probe at different temperatures during combustion of a Zhundong lignite in a drop tube furnace[J]. Fuel Process Technol, 2016, 144:155-163. doi: 10.1016/j.fuproc.2015.12.024
    [21] VASSILEV S V, KITANOB K, SHOHEI T, TSURUE T. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Process Technol, 1995, 45(1):27-51. doi: 10.1016/0378-3820(95)00032-3
    [22] YANG J G, DENG F R, ZHAO H, CEN K. Mineral conversion and microstructure change in the melting process of Shenmu coal ash[J]. Asia-Pac J Chem Eng, 20010, 2(10):165-170. https://www.researchgate.net/publication/239096050_Mineral_conversion_and_microstructure_change_in_the_melting_process_of_Shenmu_coal_ash
    [23] WU H W, BRYANT G, WALL T. The effect of pressure on ash formation during pulverized coal combustion[J]. Energy Fuels, 2000, 14(4):745-750. doi: 10.1021/ef990080w
    [24] WU X J, ZHANG Z X, PIAO G L, HE X, CHEN Y S, KOBAYASHI N, MORI S, ITAYA Y. Behavior of mineral matters in Chinese coal ash melting during gasfication reaction char-CO2/H2O[J]. Energy Fuels, 2009, 23:2420-2428. doi: 10.1021/ef801002n
    [25] VUTHALURU H B, ZHANG D K. Effect of Ca-and Mg-bearing minerals on particle agglomeration defluidisation during fluidised-bed combustion of a South Australian lignite[J]. Fuel Process Technol, 2001, 69(1):13-27. doi: 10.1016/S0378-3820(00)00129-6
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  34
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-12
  • 修回日期:  2017-01-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-03-10

目录

    /

    返回文章
    返回