留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热污泥与煤在混燃过程中的协同效应特性研究

庄修政 宋艳培 詹昊 阴秀丽 吴创之

庄修政, 宋艳培, 詹昊, 阴秀丽, 吴创之. 水热污泥与煤在混燃过程中的协同效应特性研究[J]. 燃料化学学报(中英文), 2018, 46(12): 1437-1446.
引用本文: 庄修政, 宋艳培, 詹昊, 阴秀丽, 吴创之. 水热污泥与煤在混燃过程中的协同效应特性研究[J]. 燃料化学学报(中英文), 2018, 46(12): 1437-1446.
ZHUANG Xiu-zheng, SONG Yan-pei, ZHAN Hao, YIN Xiu-li, WU Chuang-zhi. Synergistic effects in co-combusting of hydrochar derived from sewage sludge with different-rank coals[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1437-1446.
Citation: ZHUANG Xiu-zheng, SONG Yan-pei, ZHAN Hao, YIN Xiu-li, WU Chuang-zhi. Synergistic effects in co-combusting of hydrochar derived from sewage sludge with different-rank coals[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1437-1446.

水热污泥与煤在混燃过程中的协同效应特性研究

基金项目: 

国家重点研发项目 2016YFE0203300

广东省自然科学基金项目 2017B030308002

广州市科技计划项目 201803030006

详细信息
  • 中图分类号: TK6

Synergistic effects in co-combusting of hydrochar derived from sewage sludge with different-rank coals

Funds: 

the National Key R & D Project 2016YFE0203300

the Guangdong Natural Science Foundation 2017B030308002

the Guangzhou Science and Technology Project 201803030006

More Information
  • 摘要: 以城市污泥衍生的水热污泥(SS-derived hydrochar)为对象,结合傅里叶红外光谱分析(FT-IR)、X射线荧光光谱分析(XRF)和X射线衍射分析(XRD)等对比研究了水热污泥与三种不同品阶煤(褐煤、烟煤和无烟煤)在有机/无机结构与燃料特性上的异同;同时,通过热重(TG)与偏差分析(Deviation)考察水热污泥与各阶煤在不同混合比例条件下的协同燃烧行为及其作用机制。结果表明,污泥经过水热处理后其有机结构和燃烧行为均提升至与煤相似的水平,该过程不仅改善污泥的燃烧特性,并增强其与煤之间的协同燃烧效应。水热污泥中适量的轻质组分与(碱)碱土金属能在混合燃烧过程中加速煤的失重速率,其对三种煤的促进作用可达4.4%-16.1%(褐煤)、1.9%-9.4%(烟煤)和4.8%-12.1%(无烟煤)。总体而言,水热污泥与褐煤混合而成的燃料在燃料性能上具有较大的优势,并且其混合比例以30%(水热污泥):70%(褐煤)与50%(水热污泥):50%(褐煤)为宜。
  • 图  1  原料的傅里叶红外光谱谱图

    Figure  1  FT-IR results of SS, hydrochar and coals

    图  2  原料的无机组分含量

    Figure  2  Inorganic components of SS, hydrochar and coals

    图  3  原料的单独燃烧曲线及其芳构化程度

    Figure  3  Mono-combustion behavior and aromaticity of SS, hydrochar and coals

    图  4  水热污泥与煤的混合燃烧曲线

    Figure  4  Profiles of co-combustion behavior of blends

    图  5  水热污泥与煤的混合燃烧的协同效应

    Figure  5  Variation of the derivation of mixed fuels in different blending ratio

    表  1  污泥、水热污泥及各种煤的原料特性

    Table  1  Properties of sewage sludge, SS-derived hydrochar, and coals

    Sample Proximate analysis wd/% Ultimate analysis wdaf/% QHHV/ (J·g-1)
    V FC A C H O N S
    SS 39.30 4.20 56.50 50.02 6.42 40.12 3.02 0.42 9403
    Hydrochar 21.71 1.91 76.38 13.55 2.09 83.01 1.09 0.26 6637
    Coal A 50.32 42.94 6.74 59.87 4.55 34.10 0.98 0.50 24306
    Coal B 29.35 56.36 14.29 68.53 4.05 25.76 0.92 0.74 27959
    Coal C 12.02 72.27 15.71 66.09 3.26 29.77 0.47 0.41 27989
    note: V:volatile matters; A:ash; FC:fixed carbon; O (oxygen) was calculated by difference based on dry ash-free base;
    QHHV:higher heating value
    下载: 导出CSV

    表  2  单独燃烧的温度区间与特征温度点

    Table  2  Combustion stages and characteristic temperatures of biowastes and coals

    Sample Temperature range t/℃ Weight loss w/% Residues
    w/%
    Characteristic temperatures t/℃
    stage 1 stage 2 stage 3 stage 2 stage 3 ti tmax tb
    SS 50-155 155-375 375-615 26.76 10.81 57.33 227 298 595
    Hydrochar 50-120 145-355 355-615 9.94 12.02 75.19 249 390 600
    Coal A 50-140 - 255-537 - 87.24 5.48 328 395 626
    Coal B - - 374-712 - 83.66 14.77 455 552 715
    Coal C - - 325-739 - 82.13 15.96 539 608 740
    下载: 导出CSV

    表  3  混合燃料的基本特性

    Table  3  Proximate, ultimate and HHV analyses of mixed fuels

    Sample Proximate analysis wd/% Ultimate analysis wdaf/% QHHV /(MJ·kg-1)
    A V FC C H O N S cal-V exp-V
    30S:70A 26.63 42.73 30.64 45.59 4.14 48.83 1.01 0.43 19.0 20.2
    50S:50A 40.62 36.27 23.11 37.79 3.48 57.36 0.99 0.38 15.5 16.4
    70S:30A 54.63 30.59 14.78 28.96 2.98 66.73 1.00 0.33 11.9 12.6
    30S:70B 32.33 26.15 41.52 52.88 3.51 42.06 0.95 0.60 21.6 21.6
    50S:50B 45.37 24.82 29.81 41.37 3.19 53.94 1.00 0.50 17.3 17.7
    70S:30B 57.95 23.65 18.40 30.31 2.69 65.59 1.01 0.40 13.0 13.2
    30S:70C 34.17 14.88 50.95 50.44 2.49 46.04 0.67 0.36 21.6 21.7
    50S:50C 45.80 17.22 36.98 40.24 2.35 56.36 0.72 0.33 17.3 17.4
    70S:30C 57.69 19.01 23.30 30.79 2.18 65.91 0.82 0.30 13.0 13.2
    note: V, volatile matters; A, ash; FC, fixed carbon; HHV, higher heating value; cal-V, calculated value; exp-V, experimental value; d, on dry base; daf, on dry ash-free base
    下载: 导出CSV

    表  4  水热污泥与煤混合燃烧的动力学参数

    Table  4  Co-combustion kinetic parameters for hydrochar and coals

    Sample Stage 2 Stage 3
    region/℃ E1/(kJ·mol-1) A1/min-1 R2 region/℃ E2/ (kJ·mol-1) A2/min-1 R2
    Hydrochar 150-370 19.31 0.02 0.9649 370-600 21.39 0.02 0.9710
    Coal A - - - - 240-500 60.09 7.08 0.9791
    Coal B - - - - 375-625 97.15 298.47 0.9964
    Coal C - - - - 500-700 136.85 1344.17 0.9896
    30S:70A - - - - 220-530 50.82 32.46 0.9925
    50S:50A - - - - 230-520 39.23 5.44 0.9843
    70S:30A - - - - 225-515 30.20 0.12 0.9712
    30S:70B 260-420 40.23 0.02 0.9939 420-625 84.34 50.38 0.9846
    50S:50B 200-410 30.20 <0.01 0.9990 410-625 68.77 4.64 0.9793
    70S:30B 185-445 20.93 <0.01 0.9759 445-625 60.22 1.35 0.9803
    30S:70C 250-485 26.97 <0.01 0.9993 485-690 125.50 1098.58 0.9981
    50S:50C 225-480 21.21 <0.01 0.9978 480-690 107.09 903.05 0.9950
    70S:30C 225-480 20.92 <0.01 0.9842 480-690 99.20 797.74 0.9838
    note: E1 and A1 are the activation energy and pre-exponential factor for stage 2, respectively, while E2 and A2 are for stage 3
    下载: 导出CSV

    表  5  水热污泥与煤混合燃烧的性能评价

    Table  5  Combustibility index values for hydrochar and coals

    Sample Characteristic temperature (t/℃) DTG/(%·℃-1) S×1010 R×104
    ti tb tmax (dw/dt)max (dw/dt)mean
    Hydrochar 249 600 390 0.10 0.03 0.81 2.20
    Coal A 328 626 395 0.94 0.11 15.35 20.44
    Coal B 455 715 552 0.75 0.10 5.07 11.67
    Coal C 539 740 608 0.86 0.10 4.00 12.15
    30S:70A 322 495 387 0.69 0.08 10.76 15.31
    50S:50A 303 486 375 0.60 0.07 9.41 13.74
    70S:30A 302 478 375 0.39 0.05 4.47 8.93
    30S:70B 450 624 533 0.55 0.08 3.48 8.86
    50S:50B 427 615 532 0.42 0.07 2.62 6.78
    70S:30B 406 612 530 0.25 0.05 1.24 4.05
    30S:70C 522 685 600 0.63 0.08 2.70 9.02
    50S:50C 515 678 600 0.46 0.06 1.54 6.58
    70S:30C 469 675 597 0.29 0.05 0.29 4.17
    下载: 导出CSV
  • [1] PARSHETTI G K, LIU Z G, JAIN A, SRINIVASAN M P, BALASUBRAMANIAN R. Hydrothermal carbonization of sewage sludge for energy production with coal[J]. Fuel, 2013, 111:201-210. doi: 10.1016/j.fuel.2013.04.052
    [2] LEE Y J, LEE D W, PARK J H, BAE J S, KIM J G, KIM J H, PARK S J, JEON C H, CHOI Y C. Two-in-one fuel combining sewage sludge and bioliquid[J]. ACS Sustainable Chem Eng, 2016, 4(6):3276-3284. doi: 10.1021/acssuschemeng.6b00314
    [3] WANG Z Q, HONG C, XING Y, LI Y F, FENG L H, JIA M M. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal:With and without catalysts[J]. Waste Manage, 2018, 74:288-296. doi: 10.1016/j.wasman.2018.01.002
    [4] XIE C D, LIU J Y, XIE W M, KUO J H, LU X W, ZHANG X C, HE Y, SUN J, CHANG K L, XIE W H, LIU C, SUN S Y, BUYUKADA M, EVRENDILEK F. Quantifying thermal decomposition regimes of textile dyeing sludge, pomelo peel, and their blends[J]. Renewable Energy, 2018, 122:55-64. doi: 10.1016/j.renene.2018.01.093
    [5] 张光义, 马大朝, 彭翠娜, 许光文.水热处理抗生素菌渣制备固体生物燃料[J].化工学报, 2013, 64(10):3741-3749. http://d.old.wanfangdata.com.cn/Periodical/hgxb201310035

    ZHANG Guang-yi, MA Da-zhao, PENG Cui-na, XU Guang-wen. Hydrothermal treatment of antibiotic mecelial dregs for solid bio-fuel preperation[J]. J Chem Ind Eng, 2013, 64(10):3741-3749. http://d.old.wanfangdata.com.cn/Periodical/hgxb201310035
    [6] 庄修政, 黄艳琴, 阴秀丽, 吴创之.基于响应面法优化污泥燃料的水热制备工艺[J].新能源进展, 2017, (05):325-332. doi: 10.3969/j.issn.2095-560X.2017.05.001

    ZHUANG Xiu-zheng, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Optimization of hydrothermal process for solid fuel derived from sewage sludge by response surface methodology[J]. Adv New Renewable Energy, 2017, 5(5):325-332. doi: 10.3969/j.issn.2095-560X.2017.05.001
    [7] 庄修政, 黄艳琴, 阴秀丽, 吴创之.污泥水热处理制备清洁燃料的研究进展[J].化工进展, 2018, 37(1):311-318. http://d.old.wanfangdata.com.cn/Periodical/hgjz201801040

    ZHUANG Xiu-zheng, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Research on clean solid fuel derived from sludge employing hydrothermal treatment[J]. Chem Ind Eng Prog, 2018, 37(1):311-318. http://d.old.wanfangdata.com.cn/Periodical/hgjz201801040
    [8] ZHAO P T, SHEN Y F, GE S F, CHEN Z Q, YOSHIKAWA K. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment[J]. Appl Energy, 2014, 131:345-367. doi: 10.1016/j.apenergy.2014.06.038
    [9] HE C, GIANNIS A, WANG J Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization:Hydrochar fuel characteristics and combustion behavior[J]. Appl Energy, 2013, 111(11):257-266. http://www.sciencedirect.com/science/article/pii/S0306261913003887
    [10] HE C, WANG K, YANG Y, WANG J Y. Utilization of sewage-sludge-derived hydrochars toward efficient cocombustion with different-rank coals:Effects of subcritical water conversion and blending scenarios[J]. Energy Fuels, 2014, 28(9):6140-6150. doi: 10.1021/ef501386g
    [11] ZHUANG X, ZHAN H, HUANG Y, SONG Y, YIN X, WU C. Conversion of industrial biowastes to clean solid fuels via hydrothermal carbonization (HTC):Upgrading mechanism in relation to coalification process and combustion behavior[J]. Bioresour Technol, 2018, 267:17-29. doi: 10.1016/j.biortech.2018.07.002
    [12] OTERO M, GOMEZ X, GARCIA A I, MORAN A. Effects of sewage sludge blending on the coal combustion:A thermogravimetric assessment[J]. Chemosphere, 2007, 69(11):1740-1750. doi: 10.1016/j.chemosphere.2007.05.077
    [13] LIU Z G, QUEK A, HOEKMAN S K, SRINIVASAN M P, BALASUBRAMANIAN R. Thermogravimetric investigation of hydrochar-lignite co-combustion[J]. Bioresour Technol, 2012, 123:646-652. doi: 10.1016/j.biortech.2012.06.063
    [14] LIN Y, LIAO Y, YU Z, FANG S, MA X. The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis[J]. Thermochim Acta, 2017, 653:71-78. doi: 10.1016/j.tca.2017.04.003
    [15] SMITH A M, SINGH S, ROSS A B. Fate of inorganic material during hydrothermal carbonisation of biomass:Influence of feedstock on combustion behaviour of hydrochar[J]. Fuel, 2016, 169:135-145. doi: 10.1016/j.fuel.2015.12.006
    [16] CHEN W D, WANG F, KANHAR A H. Sludge acts as a catalyst for coal during the Co-combustion process investigated by thermogravimetric analysis[J]. Energies, 2017, 10(12).
    [17] CAO J P, LI L Y, MORISHITA K, XIAO X B, ZHAO X Y, WEI X Y, TAKARADA T. Nitrogen transformations during fast pyrolysis of sewage sludge[J]. Fuel, 2013, 104(2):1-6. http://www.sciencedirect.com/science/article/pii/S001623611000431X
    [18] ZHUANG X Z, HUANG Y Q, SONG Y P, ZHAN H, YIN X L, WU C Z. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresour Technol, 2017, 245:463-470. doi: 10.1016/j.biortech.2017.08.195
    [19] MAGDZIARZ A, DALAI A K, KOZINSKI J A. Chemical composition, character and reactivity of renewable fuel ashes[J]. Fuel, 2016, 176:135-145. doi: 10.1016/j.fuel.2016.02.069
    [20] SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FT-IR spectroscopy[J]. Energy, 2010, 35(12):5347-5353. doi: 10.1016/j.energy.2010.07.025
    [21] BAYSAL M, YURUM A, YILDIZ B, YURUM Y. Structure of some western Anatolia coals investigated by FT-IR, Raman, C-13 solid state NMR spectroscopy and X-ray diffraction[J]. Int J Coal Geol, 2016, 163:166-176. doi: 10.1016/j.coal.2016.07.009
    [22] XIE C D, LIU J Y, ZHANG X C, XIE W M, SUN J, CHANG K L, KUO J H, XIE W H, LIU C, SUN S Y, BUYUKADA M, EVRENDILEK F. Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks[J]. Appl Energy, 2018, 212:786-795. doi: 10.1016/j.apenergy.2017.12.084
    [23] MUTHURAMAN M, NAMIOKA T, YOSHIKAWA K. A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste[J]. Bioresour Technol, 2010, 101(7):2477-2482. doi: 10.1016/j.biortech.2009.11.060
    [24] XIE W H, HUANG J L, LIU J Y, ZHAO Y J, CHANG K L, KUO J H, HE Y, SUN J, ZHENG L, XIE W M, SUN S Y, BUYUKADA M, EVRENDILEK F. Assessing thermal behaviors and kinetics of (co-) combustion of textile dyeing sludge and sugarcane bagasse[J]. Appl Therm Eng, 2018, 131:874-883. doi: 10.1016/j.applthermaleng.2017.11.025
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  112
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-06
  • 修回日期:  2018-09-19
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-12-10

目录

    /

    返回文章
    返回