留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiWO4/g-C3N4的制备及其在离子液体中氧化脱硫性能的研究

李秀萍 赵荣祥 邢鹏飞

李秀萍, 赵荣祥, 邢鹏飞. NiWO4/g-C3N4的制备及其在离子液体中氧化脱硫性能的研究[J]. 燃料化学学报(中英文), 2017, 45(11): 1340-1348.
引用本文: 李秀萍, 赵荣祥, 邢鹏飞. NiWO4/g-C3N4的制备及其在离子液体中氧化脱硫性能的研究[J]. 燃料化学学报(中英文), 2017, 45(11): 1340-1348.
LI Xiu-ping, ZHAO Rong-xiang, XING Peng-fei. Preparation of NiWO4/g-C3N4 and its ultra-deep desulfurization properties in ionic liquid[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1340-1348.
Citation: LI Xiu-ping, ZHAO Rong-xiang, XING Peng-fei. Preparation of NiWO4/g-C3N4 and its ultra-deep desulfurization properties in ionic liquid[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1340-1348.

NiWO4/g-C3N4的制备及其在离子液体中氧化脱硫性能的研究

详细信息
  • 中图分类号: TE624

Preparation of NiWO4/g-C3N4 and its ultra-deep desulfurization properties in ionic liquid

More Information
    Corresponding author: ZHAO Rong-xiang, Tel:024-56860937, E-mail:zylhzrx@126.com
  • 摘要: 采用水热法合成了NiWO4纳米粒子,然后通过混合煅烧法成功地制备了负载型催化剂NiWO4/g-C3N4。采用XRD、FT-IR、EDS、SEM、BET和XPS表征了NiWO4/g-C3N4的形貌和结构特征。以NiWO4/g-C3N4为催化剂,过氧化氢为氧化剂,1-丁基-3-甲基咪唑四氟硼酸盐离子液体([BMIM]BF4)为萃取剂。考察了催化剂的负载量,过氧化氢、离子液体和催化剂使用量,反应温度,反应时间,不同种类的含硫化合物对脱硫效果的影响。结果表明,在5 mL模拟油,0.2 mL过氧化氢,1.0 mL的[BMIM]BF4,0.03 g的NiWO4/g-C3N4,反应温度为80 ℃,反应时间为140 min的最佳的反应条件下,脱硫率可以达到97.35%。实验表明,NiWO4/g-C3N4具有很好的催化稳定性,催化剂重复使用五次后催化活性并没有明显地降低。
  • 图  1  g-C3N4和NiWO4/g-C3N4的XRD谱图

    Figure  1  XRD patterns of g-C3N4 and NiWO4/g-C3N4

    a: g-C3N4; b: 5%-NiWO4/g-C3N4; c: 10%-NiWO4/g-C3N4; d: 15%-NiWO4/g-C3N4; e: 20%-NiWO4/g-C3N4

    图  2  NiWO4/g-C3N4的红外光谱谱图

    Figure  2  FT-IR spectra of NiWO4/g-C3N4

    a: g-C3N4; b: 5%-NiWO4/g-C3N4; c: 10%-NiWO4/g-C3N4; d: 15%-NiWO4/g-C3N4; e: 20%-NiWO4/g-C3N4

    图  3  20%-NiWO4/g-C3N4的EDS能谱谱图

    Figure  3  EDS spectrum of 20%-NiWO4/g-C3N4

    图  4  g-C3N4 NiWO4和20%-NiWO4/g-C3N4的SEM照片

    Figure  4  SEM images of (a) g-C3N4, (b) NiWO4 and (c) 20%-NiWO4/g-C3N4

    图  5  20%-NiWO4/g-C3N4的XPS谱图

    Figure  5  XPS spectra of 20%-NiWO4/g-C3N4

    (a): the survey spectrum;(b): W 4f;(c): C 1s;(d): N 1s;(e): O 1s;(f): Ni 2p

    图  6  NiWO4负载量对脱硫率的影响

    Figure  6  Effect of catalyst loading amount on the desulfurization rate

    V(DBT, oil)=5 mL; V([BMIM]BF4)=1.0 mL; m(NiWO4/g-C3N4)=0.02 g; V(H2O2)=0.2 mL; t=80 ℃; t=180 min

    图  7  H2O2加入量对脱硫率的影响

    Figure  7  Effect of amount of H2O2 on the desulfurization rate

    V(DBT, oil)=5 mL; V([BMIM]BF4)=1.0 mL; m(20%-NiWO4/g-C3N4)=0.02 g; t=80 ℃; t=180 min

    图  8  离子液体使用量对脱硫率的影响

    Figure  8  Effect of the amount of IL on the desulfurization rate

    V(DBT, oil)=5 mL; m(20%-NiWO4/g-C3N4)=0.02 g; V(H2O2)=0.2 mL; t=80℃; t=180 min

    图  9  催化剂使用量对脱硫率的影响

    Figure  9  Effect of the amount of catalyst on the desulfurization rate

    V(DBT, oil)=5 mL; V([BMIM]BF4)=1.0 mL; V(H2O2)=0.2 mL; t=80 ℃; t=180 min

    图  10  反应温度对脱硫率的影响

    Figure  10  Effect of the reaction temperature on the desulfurization rate

    V(DBT, oil)=5 mL; V([BMIM]BF4)=1.0 mL; V(H2O2)=0.2 mL; m(20%-NiWO4/g-C3N4)=0.03 g; t=180 min

    图  11  不同含硫化合物对脱硫率的影响

    Figure  11  Effect of different sulfur compounds on the desulfurization rate

    V(oil)=5 mL; V([BMIM]BF4)=1.0 mL; V(H2O2)=0.2 mL; m(20%-NiWO4/g-C3N4)=0.03 g; t=80 ℃; t=140 min

    图  12  NiWO4/g-C3N4催化氧化脱硫机理示意图

    Figure  12  Mechanism of oxidative desulfurization catalyzed by NiWO4/g-C3N4

    表  1  不同负载量的NiWO4/g-C3N4催化剂的比表面积

    Table  1  Specific surface area of g-C3N4, NiWO4 and NiWO4/g-C3N4 with different loading amount

    Catalyst Specific surface area A/(m2·g-1)
    g-C3N4 18.15
    NiWO4 112.60
    5%-NiWO4/g-C3N4 40.12
    10%-NiWO4/g-C3N4 43.60
    15%-NiWO4/g-C3N4 46.76
    20%-NiWO4/g-C3N4 48.58
    下载: 导出CSV

    表  2  20%-NiWO4/g-C3N4循环次数使用对脱硫效果的影响

    Table  2  Influence of the recycle times of 20%-NiWO4/g-C3N4 on the desulfurization rate

    Number of recycle 1 2 3 4 5
    Desulfurization rate η /% 97.35 96.33 96.18 95.87 95.47
    下载: 导出CSV
  • [1] LORENÇON E, ALVES D C B, KRAMBROCK K, ERICK S Á, RESENDE R R, FERLAUTO A S, LAGO R M. Oxidative desulfurization of dibenzothiophene over titanate nanotubes[J]. Fuel, 2014, 132:53-61. doi: 10.1016/j.fuel.2014.04.020
    [2] YAN X M, SU G S, XIONG L. Oxidative desulfurization of diesel oil over Ag-modified mesoporous HPW/SiO2catalyst[J]. J Fuel Chem Technol, 2009, 7(3):318-323. http://en.cnki.com.cn/Article_en/CJFDTOTAL-RLHX200903015.htm
    [3] BAZYARI A, KHODADADI A A, MAMAGHANI A H, BEHESHTIAN J, THOMPSON L T, MORTAZAVI Y. Microporous titania-silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization[J]. Appl Catal B:Environ, 2016, 180:65-77. doi: 10.1016/j.apcatb.2015.06.011
    [4] STANISLAUS A, MARAFI A, RANA M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production[J].Catal Today, 2010, 153(1):1-68. http://www.sciencedirect.com/science/article/pii/S0920586110003299
    [5] JIANG B, YANG H, ZHANG L, ZHANG R Y, SUN Y L, HUANG Y. Efficient oxidative desulfurization of diesel fuel using amide-based ionic liquids[J]. Chem Eng J, 2016, 283:89-96. doi: 10.1016/j.cej.2015.07.070
    [6] LI C, LI D, ZOU S, LI Z, YIN J M, WANG A L, CUI Y N, YAO Z L, ZHAO Q. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J].Green Chem, 2013, 15(10):2793-2799. doi: 10.1039/c3gc41067f
    [7] HUANG L, WANG G, QIN Z, DONG M, DU M X, GE H, LI X K, ZHAO Y D, ZHANG J, HU T D, WANG J G. In situ XAS study on the mechanism of reactive adsorption desulfurization of oil product over Ni/ZnO[J]. Appl Catal B:Environ, 2011, 106(1):26-38. http://www.sciencedirect.com/science/article/pii/S0926337311002025
    [8] MARGETA D, SERTIĆ-BIONDA K, FOGLAR L. Ultrasound assisted oxidative desulfurization of model diesel fuel[J]. Appl Acoust, 2016, 103(2):202-206. http://www.sciencedirect.com/science/article/pii/S0003682X15001905
    [9] WU L, SITAMRAJU S, XIAO J, LIU B, LI Z, JANIK M J, SONG C S. Effect of liquid-phase O3 oxidation of activated carbon on the adsorption of thiophene[J]. Chem Eng J, 2014, 242:211-219. doi: 10.1016/j.cej.2013.12.077
    [10] BAKAR W A W A, ALI R, KADIR A A A, MOKHTAR W N A W. Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel[J]. Fuel Process Technol, 2012, 101:78-84. doi: 10.1016/j.fuproc.2012.04.004
    [11] GARCÍA-GUTIÉRREZ J L, LAREDO G C, GARCÍA-GUTIÉRREZ P, JIMÉNEZ-CRUZ F. Oxidative desulfurization of diesel using promising heterogeneous tungsten catalysts and hydrogen peroxide[J]. Fuel, 2014, 138:118-125. doi: 10.1016/j.fuel.2014.07.049
    [13] SHI X Y, SUN M, FAN J, WANG P M, MA W J, WEI J F. Deep oxidative desulfurization of benzothiophene and dibenzothiophene with a peroxophosphotungstate-ionic liquid brush assembly[J].Appl Organomet Chem, 2015, 29(9):633-637. doi: 10.1002/aoc.v29.9
    [14] ZHU W, WU P, YANG L, CHANG Y H, CHAO Y H, LI H M, JIANG Y Q, JIANG W, XUN S H. Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels[J]. Chem Eng J, 2013, 229(4):250-256. http://www.sciencedirect.com/science/article/pii/S1385894713007572
    [15] WAN M W, YEN T F. Enhance efficiency of tetraoctylammonium fluoride applied to ultrasound-assisted oxidative desulfurization (UAOD) process[J]. Appl Catal A:Gen, 2007, 319(1):237-245. http://www.sciencedirect.com/science/article/pii/S0926860X06008854
    [16] ZHANG M, ZHU W, XUN S, LI H M, GU Q Q, ZHAO Z, WANG Q. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids[J]. Chem Eng J, 2013, 220(6):328-336. http://www.sciencedirect.com/science/article/pii/S138589471300096X
    [17] SHAN J H, CHEN L, SUN L B, LIU X Q. Adsorptive removal of thiophene by Cu-modified mesoporous silica MCM-48 derived from direct synthesis[J]. Energy Fuels, 2011, 25(7):3093-3099. doi: 10.1021/ef200472j
    [18] ZHU W, XU Y, LI H, DAI B L, XU H, WANG CHAO, CHAO Y H, LIU H. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2, in ionic liquid[J]. Korean J Chem Eng, 2014, 31(2):211-217. doi: 10.1007/s11814-013-0224-3
    [19] SUN B, ZHAO W, WEI L, LI H W, CHEN P. Enhanced resistive switching effect upon illumination in self-assembled NiWO4 nano-nests[J]. Chem Commun, 2014, 50(86):13142-5. doi: 10.1039/C4CC05784H
    [20] LIU D, GUI J, PENG X, YANG S, SUN Z L. Deep oxidative desulfurization of real diesel catalyzed by Na2WO4, in ionic liquid[J]. Energ Source Part A, 2013, 35(1):1-8. doi: 10.1080/15567036.2010.503230
    [21] 邢鹏飞, 石薇薇, 李秀萍, 赵荣祥. NiWO4的制备及其在离子液体中深度氧化脱硫的应用[J].石油学报(石油加工), 2017, 33(2):334-342. http://www.cqvip.com/QK/94167X/201702/671649453.html

    XING Peng-fei, SHI Wei-wei, LI Xiu-ping, ZHAO Rong-xiang.Preparation of NiWO4 catalyst and its application in the oxidationde sulfurization of model oil[J]. Acta Pet Sin (Pet Process Sect) 2017, 33(2):334-342. http://www.cqvip.com/QK/94167X/201702/671649453.html
    [22] XING P F, ZHAO R X, LI X P, GAO X H. Preparation of CoWO4/g-C3N4and its ultra-deep desulfurization property[J]. Aust J Chem, ,70(3):271-279. doi: 10.1071/CH16320
    [23] WANG X C, MAEDA K, THOMAS A, TAKANABE K, XIN G, CARLSSON J M, DOMEN K, ANTONIETTI M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater, 2009, 8(1):76-80. doi: 10.1038/nmat2317
    [24] JING D, LIU Q, ZHANG Z, LIU X, ZHAO J Q, CHENG S B, ZONG B N, DAI W L. Carbon nitride nanosheets decorated with WO3, nanorods:Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes[J]. Appl Catal B:Environ, 2015, 165:511-518. doi: 10.1016/j.apcatb.2014.10.037
    [25] YAN H, CHEN Y, XU S. Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light[J].Int J Hydrogen Energy, 2012, 37(1):125-133. doi: 10.1016/j.ijhydene.2011.09.072
    [26] 宋继梅, 刘晓灵, 董纳, 李文慧, 司维, 杨捷.介孔板栗状NiWO4吸附剂的制备及其性能[J].安徽大学学报(自科版), 2016, 40(1):73-79. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ahdx201601012&dbname=CJFD&dbcode=CJFQ

    SONG Ji-mei, LIU Xiao-ling, DONG Na, LI Wen-hui, SI Wei, YANG Jie.Preparation and properties of Mesoporous NiWO4 nanospheres[J]. J Anhui Univ(Nat Sci), 2016, 40(1):73-79. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ahdx201601012&dbname=CJFD&dbcode=CJFQ
    [27] GREEN S V, KUZMIN A, PURANS J, GRANQVIST C G, NIKLASSON G A. Structure and composition of sputter-deposited nickel-tungsten oxide films[J]. Thin Solid Films, 2011, 519(7):2062-2066. doi: 10.1016/j.tsf.2010.10.033
    [28] GU Y, CHEN L, SHI L, MA J H, YANG Z, QIAN Y T. Synthesis of C3N4 and graphite by reacting cyanuric chloride with calcium cyanamide[J]. Carbon, 2003, 41(13):2674-2676. doi: 10.1016/S0008-6223(03)00357-9
    [29] TALAPANENI S N, ANANDAN S, MANE G P, ANAND C, DHAWALE D S, VARGHESE S, MANO A, MORI T, VINU A. Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution[J]. J Mater Chem, 2012, 22(19):9831-9840. doi: 10.1039/c2jm30229b
    [30] DONG F, WU L, SUN Y, FU M, WU Z B, LEE S C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. J Mater Chem, 2011, 21(39):15171-15174 doi: 10.1039/c1jm12844b
    [31] NG K T, HERCULES D M. Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy[J]. J Phys Chem, 1976, 80(19):2094-2102. doi: 10.1021/j100560a009
    [32] MOULDER J F, STICKLE W F, SOBOL P E, BOMBEN K D, CHASTAIN J. Handbook of X-ray photoelectron spectroscop[J]. Chem Phys Lett, 1979, 220(1):7-10. https://www.researchgate.net/publication/284949135_Handbook_of_X-Ray_Photoelectron_Spectroscop
    [33] MANCHEVA M N, IORDANOVA R S, KLISSURSKI DIMITAR G, TYULIEV G T, KUNEV B N. Direct mechanochemical synthesis of nanocrystalline NiWO4[J]. J Phys Chem C, 2007, 111(3):1101-1104. doi: 10.1021/jp065071k
    [34] ZHANG J, ZHU W, LI H, JIANG W, JIANG Y Q, HUANG W L, YAN Y S. Deep oxidative desulfurization of fuels by Fenton-like reagent in ionic liquids[J]. Green Chem, 2009, 11(11):1801-1807. doi: 10.1039/b914130h
    [35] LI L, ZHANG J, SHEN C, WANG Y J, LUO G S. Oxidative desulfurization of model fuels with pure nano-TiO2 as catalyst directly without UV irradiation[J]. Fuel, 2015, 167:9-16. https://www.researchgate.net/publication/284358449_Oxidative_desulfurization_of_model_fuels_with_pure_nano-TiO2_as_catalyst_directly_without_UV_irradiation
    [36] LÜ H, REN W, WANG H, WANG Y, CHEN W, SUO Z H. Deep desulfurization of diesel by ionic liquid extraction coupled with catalytic oxidation using an Anderson-type catalyst[(C4H9)4 N]4NiMo6O24H6[J]. Appl Catal A:Gen, 2013, 453:376-382. doi: 10.1016/j.apcata.2012.12.047
    [37] LÜ H, DENG C, REN W, YANG X. Oxidative desulfurization of model diesel using[(C4H9)4N]6Mo7O24, as a catalyst in ionic liquids[J]. Fuel Process Technol, 2014, 119(1):87-91.
    [38] 李宇慧, 冯丽娟, 王景刚, 周旋, 程斌斌, 王晓燕, 李春虎. MoO3/介孔Al2O3催化氧化脱除模拟油中的硫[J].高等学校化学学报, 2011, 32(3):778-782. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gdxh201103059&dbname=CJFD&dbcode=CJFQ

    LI Yu-hui, FENG Li-juan, WANG Jing-gang, ZHOU Xuan, CHENG Bin-bin, WANG Xiao-yan, LI Chun-hu. Catalytic oxidative desulfurization of model oil by MoO3/mesoporous Al2O3[J]. Chem J Chin Univ, 2011, 32(3):778-782. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gdxh201103059&dbname=CJFD&dbcode=CJFQ
    [39] 苏建勋, 艾东, 赵荣祥, 李秀萍. CuWO4/C复合物的制备和其在模拟油氧化脱硫中的应用[J].燃料化学学报, 2015, 43(12):1476-1481. doi: 10.3969/j.issn.0253-2409.2015.12.011

    SU Jian-xun, AI Dong, ZHAO Rong-xiang, LI Xiu-ping. Study of the preparation of CuWO4/C composite and it's application in oxidative desulfurization of model oil[J]. J Fuel Chem Technol, 2015, 43(12):1476-1481. doi: 10.3969/j.issn.0253-2409.2015.12.011
    [40] YI N, DONG Y, LU B, DONG H F, ZHANG X P. Fast oxidative desulfurization of fuel oil using dialkylpyridinium tetrachloroferrates ionic liquids[J]. Fuel, 2013, 103(1):997-1002. http://www.sciencedirect.com/science/article/pii/S0016236112006321
    [41] OTSUKI S, NONAKA T, TAKASHIMA N, QIAN W H, ISHIHARA A, IMAI T, KABE T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy Fuels, 2000, 14(6):1232-1239. doi: 10.1021/ef000096i
    [42] LÜ H Y, GAO J B, JIANG Z X, FEI J, YANG Y X, WANG G, LI C. Ultra-deep desulfurization of diesel by selective oxidation with[C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets[J]. J Catal, 2006, 239:369-375. doi: 10.1016/j.jcat.2006.01.025
    [43] 李佳慧, 胡嘉, 赵荣祥, 李秀萍.氨基酸功能化磷钨酸盐的制备及其催化氧化脱硫性能[J].燃料化学学报, 2014, 42(11):1394-1399. doi: 10.3969/j.issn.0253-2409.2014.11.018

    LI Jia-hui, HU Jia, ZHAO Rong-xiang, LI Xiu-ping. Prepartion of amino acid functionalized heteropolyacid salt and its catalytic performance for oxidation desulfurization of model oil[J]. J Fuel Chem Technol, 2014, 42(11):1394-1399. doi: 10.3969/j.issn.0253-2409.2014.11.018
    [44] ABDALLA Z E A, LI B, TUFAIL A. Preparation of phosphate promoted Na2WO4/Al2O3 catalyst and its application for oxidative desulfurization[J]. J Ind Eng Chem, 2009, 15(6):780-783. doi: 10.1016/j.jiec.2009.09.026
    [45] USUI Y, SATO K A. Green method of adipic acid synthesis:organic solvent-and halide-free oxidation of cycloalkanones with 30% hydrogen peroxide[J]. Green Chem, 2003, 5(4):373-375. doi: 10.1039/b305847f
    [46] EDE S R, KUNDU S. Microwave synthesis of SnWO4 nanoassemblies on DNA scaffold:A novel material for high performance supercapacitor and as catalyst for butanol oxidation[J]. ACS Sustainable Chem Eng, 2015, 3(9):2321-2336. doi: 10.1021/acssuschemeng.5b00627
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  86
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-12
  • 修回日期:  2017-07-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-11-10

目录

    /

    返回文章
    返回