留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矸石催化气化耦合气化灰提铝过程中K2CO3和Na2CO3作用的对比研究

苗恒洋 王志青 李翔宇 梅艳钢 刘哲语 宋双双 董立波 黄戒介 房倚天

苗恒洋, 王志青, 李翔宇, 梅艳钢, 刘哲语, 宋双双, 董立波, 黄戒介, 房倚天. 煤矸石催化气化耦合气化灰提铝过程中K2CO3和Na2CO3作用的对比研究[J]. 燃料化学学报(中英文), 2020, 48(9): 1063-1070.
引用本文: 苗恒洋, 王志青, 李翔宇, 梅艳钢, 刘哲语, 宋双双, 董立波, 黄戒介, 房倚天. 煤矸石催化气化耦合气化灰提铝过程中K2CO3和Na2CO3作用的对比研究[J]. 燃料化学学报(中英文), 2020, 48(9): 1063-1070.
MIAO Heng-yang, WANG Zhi-qing, LI Xiang-yu, MEI Yan-gang, LIU Zhe-yu, SONG Shuang-shuang, DONG Li-bo, HUANG Jie-jie, FANG Yi-tian. Comparative study of K2CO3 and Na2CO3 in the process of coal gangue catalytic gasification coupled with aluminum extraction from gasification ash[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1063-1070.
Citation: MIAO Heng-yang, WANG Zhi-qing, LI Xiang-yu, MEI Yan-gang, LIU Zhe-yu, SONG Shuang-shuang, DONG Li-bo, HUANG Jie-jie, FANG Yi-tian. Comparative study of K2CO3 and Na2CO3 in the process of coal gangue catalytic gasification coupled with aluminum extraction from gasification ash[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1063-1070.

煤矸石催化气化耦合气化灰提铝过程中K2CO3和Na2CO3作用的对比研究

基金项目: 

国家自然科学基金资助 21506242

详细信息
    通讯作者:

    WANG Zhi-qing,Tel: +86 351 2021137-801, Fax: +86 351 2021137-802, E-mail:qcumt@sxicc.ac.cn

  • 中图分类号: TQ511

Comparative study of K2CO3 and Na2CO3 in the process of coal gangue catalytic gasification coupled with aluminum extraction from gasification ash

Funds: 

The project was supported by the National Natural Science Foundation of China 21506242

  • 摘要: 以煤矸石为研究对象,对比研究了Na2CO3与K2CO3对煤矸石催化气化反应性及催化气化灰中Al的溶出行为的影响。同时,采用X射线衍射分析(XRD)和热重分析(TGA)研究了不同催化剂及温度作用下矸石中矿物质的热转变过程。结果表明,与K2CO3相比,煤矸石中的高岭石更容易与Na2CO3反应生成钠霞石,而酸浸可实现钠霞石中铝和硅元素的有效分离。此外,Na2CO3作为催化剂时,所得气化灰经盐酸浸取后铝的浸出率可达到94.2%。而K2CO3作催化剂时,其铝的浸出率只有83.7%。因此,对矸石催化气化耦合气化灰的铝提取来说,Na2CO3催化剂具有更好的选择性。
  • 图  1  小峪煤矸石的XRD谱图

    Figure  1  XRD patterns of XCG

    图  2  管式炉实验系统示意图

    Figure  2  Schematic diagram of tube furnace experiment system

    图  3  两种催化剂在不同温度下对气化反应性能的影响

    Figure  3  Effects of two catalysts on gasification reactivity at different temperatures

    ■: K2CO3; ●: Na2CO3

    图  4  不同温度下气化反应指数的变化

    Figure  4  Changes of gasification reaction index at different temperatures

    图  5  CM在CO2气氛下的失重曲线

    Figure  5  Weight loss curves of CM

    图  6  CGA-K催化气化灰的XRD谱图

    Figure  6  XRD patterns of CGA-K catalytic gasification ash

    A: kalsilite (KAlSiO4); B: quarz (SiO2)

    图  7  CGA-Na催化剂的XRD谱图

    Figure  7  XRD patterns of CG-Na

    A: nepheline(Na7.11(Al7.2Si8.88O32)); B: sodium aluminum silicate (NaAlSiO4); C: nepheline(Si-rich)(Na6.8(Al6.3Si9.7O32)); D: nepheline(Na-exchanged)(Na6.65Al6.24Si9.76O32)

    图  8  不同催化剂下Al的浸出率变化规律

    Figure  8  Variation of Al leaching rate under different catalysts

    图  9  1000 ℃下酸溶灰的XRD谱图

    Figure  9  XRD patterns of acid-dissolved ash at 1000℃

    A: quarz (SiO2); B: kalsilite (KAlSiO4)

    图  10  1000 ℃下气化灰和酸溶灰的SEM照片

    Figure  10  SEM images of gasification ash and acid soluble ash at 1000℃

    (a): GA-K; (b): Cl-CGA-K; (c): CGA-Na; (d): HCl-CGA-Na

    表  1  原煤矸石的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of coal gangue sample

    Proximate analysis wad/% Ultimate analysis wdaf/%
    M A V FC C H Oa N S
    0.93 65.00 17.07 17.00 62.46 6.23 30.14 0.88 0.29
    a: by difference
    下载: 导出CSV

    表  2  灰成分分析

    Table  2  Ash compositions of coal gangue sample

    Sample Content w/%
    SiO2 Al2O3 Fe2O3 CaO MgO P2O5 TiO2 K2O Na2O Cl2O
    XCG 52.51 44.96 0.32 0.20 0.21 0.42 1.02 0.13 0.00 0.23
    CGA-Na 47.01 33.42 0.63 0.13 0.12 0.03 0.81 0.21 17.54 0.10
    CGA-K 39.11 32.19 0.66 0.15 0.08 0.37 0.92 26.4 0.00 0.12
    下载: 导出CSV

    表  3  800 ℃下气化灰和酸溶灰的能谱分析

    Table  3  EDS analysis results of gasification ash and acid soluble ash at 800 ℃

    Sample EDS analysis results w/%
    Si Al O K Na
    CGA-K 9.54 8.99 70.24 11.24 0.00
    HCl-CGA-K 13.37 3.89 82.74 0.00 0.00
    CGA-Na 9.47 7.39 73.06 0.00 10.08
    HCl-CGA-Na 34.79 0.00 65.21 0.00 0.00
    下载: 导出CSV
  • [1] BIAN Z F, DONG J H, LEI S G, LENG H L, MU S G, WANG H. The impact of disposal and treatment of coal mining wastes on environment and farmland[J]. Environ Geol, 2009, 58(3):625-634. doi: 10.1007/s00254-008-1537-0
    [2] LI H, ZHENG F, WANG J, ZHOU J, HUANG X H, CHEN L, HU P, GAO J M, ZHEN Q, BASHIR S, LIU J H. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance[J]. Chem Eng J, 2020, 390:1-11. http://www.sciencedirect.com/science/article/pii/S1385894720305040
    [3] CHENG F, CUI L, MILLER J D, WANG, X. Aluminum leaching from calcined coal waste using hydrochloride ORIC acid solution[J]. Miner Process Extr Metall Rev, 2012, 33(6):391-403. doi: 10.1080/08827508.2011.601700
    [4] LI C, WAN J H, SUN H H, LI L T. Investigation on the activation of coal gangue by a new compound method[J]. J Hazard Mater, 2010, 179(3):515-520. http://www.sciencedirect.com/science/article/pii/S0304389410003390
    [5] QIAO X C, SI P, YU J G. A systematic investigation into the extraction of aluminum from coal spoil through kaolinite[J]. Environ Sci Technol, 2008, 42(22):8541-8546. doi: 10.1021/es801798u
    [6] ZHU P H, ZHENG M, ZHAO S Y, WU J Y, XU H X. A novel environmental route to ambient pressure dried thermal insulating silica aerogel via recycled coal gangue[J]. Adv Mater Sci Eng, 2016, 1-9. http://www.researchgate.net/publication/302634012_A_Novel_Environmental_Route_to_Ambient_Pressure_Dried_Thermal_Insulating_Silica_Aerogel_via_Recycled_Coal_Gangue
    [7] GUO W. Early hydration of composite cement with thermal activated coal gangue[J]. J Wuhan Univ Technol. 2010, 25(1):162-166. doi: 10.1007/s11595-010-1162-0
    [8] ZHANG C S, LIU X F, WU Q S, DENG Y X, LI L. Study of mechanical force on coal gangue reactivity[J]. 2013, 539: 145-148. 10.4028/www.scientific.net/kem.539.145
    [9] GENG J J, ZHOU M, LI Y X, CHEN Y C, HAN Y, WAN S, ZHOU X, HOU H B. Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation[J]. Constr Build Mater, 2017, 153:185-192. doi: 10.1016/j.conbuildmat.2017.07.045
    [10] LI Y, YAO Y, LIU X M, SUN H H, NI W. Improvement on pozzolanic reactivity of coal gangue by integrated thermal and chemical activation[J]. Fuel, 2013, 109:527-533. doi: 10.1016/j.fuel.2013.03.010
    [11] 肖汉敏, 马晓茜.污泥与煤和煤矸石共燃特性研究[J].燃料化学学报, 2008, 36(5): 545-550. http://www.cnki.com.cn/Article/CJFDTotal-RLHX200805006.htm

    XIAO Han-min, MA Xiao-qian. Technol characteristics of co-combustion of coal, coal gangue and sewage sludge[J]. 2008, 36(5): 545-550. http://www.cnki.com.cn/Article/CJFDTotal-RLHX200805006.htm
    [12] SALAHUDEEN N, AHMED A S, AL-MUHTASEB A H, DAUDA M, WAZIRI S M, JIBRIL B Y. Synthesis of gamma alumina from Kankara kaolin using a novel technique[J]. Appl Clay Sci, 2015, 105:170-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85f3a973c3d5deda805356b55a48eee4
    [13] 梅艳钢, 王志青, 方惠斌, 冯荣涛, 房倚天.燃烧与催化气化灰中铝溶出行为的研究[J].燃料化学学报, 2017, 45(4):394-399. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201704002

    MEI Yan-gang, WANG Zhi-qing, FANG Hui-bin, FENG Rong-tao, FANG Yi-tian. Comparison of leaching behaviors of aluminum in ash from combustion and catalytic gasification[J]. J Fuel Chem Technol, 2017, 45(4):394-399. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201704002
    [14] MOLINO A, CHIANESE S, MUSMARRA D. Biomass gasification technology:The state of the art overview[J]. J Energy Chem, 2016, 25(1):10-25. http://www.cqvip.com/QK/84213A/201601/668981350.html
    [15] PARVEZ A M, AFZAL M T. Gasification performance of torrefied Timothy hay and spruce wood chars in a CO2 environment[J]. Cana J Chem Eng, 2020, 98(8):1696-1707. doi: 10.1002/cjce.23729
    [16] 陈凡敏, 王兴军, 王西明, 周志杰.煤催化气化过程中钾的迁移及其对气化反应特性的影响[J].燃料化学学报, 2013, 41(3):265-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201303002

    CHEN Fan-min, WANG Xing-jun, WANG Xi-ming, ZHOU Zhi-jie. Transformation of potassium during catalytic gasification of coal and the effect on gasification[J]. J Fuel Chem Technol, 2013, 41(3):265-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201303002
    [17] 孙雪莲, 王黎, 张占涛.煤气化复合催化剂研究及机理探讨[J].煤炭转化, 2006, 29(1):15-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtzh200601004

    SUN Xue-lian, WANG Li, ZHANG Zhan-tao. Study on compound catalyst for gasification and its mechanism[J].Coal Conv, 2006, 29(1):15-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtzh200601004
    [18] 王勇, 樊红莉, 徐美玲, 李风海.煤催化气化催化剂及其催化机理研究进展[J].山东化工, 2015, 44(15):58-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdhg201515023

    WANG Yong, FAN Hong-li, XU Mei-ling, LI Feng-hai. Research progress on catalysts and catalytic mechanism of coal catalytic gasification[J]. Shandong Chem Ind, 2015, 44(15):58-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdhg201515023
    [19] DONG L, LIANG X X, SONG Q, GAO G, SONG L H, SHU Y F, SHU X Q. Study on Al2O3 extraction from activated coal gangue under different calcination atmospheres[J]. J Therm Sci, 2017, 26(6):570-576. doi: 10.1007/s11630-017-0975-y
    [20] WANG Y W, WANG Z Q, HUANG J J, FANG Y T. Catalytic gasification activity of Na2CO3 and comparison with K2CO3 for a high-aluminum coal char[J]. Energy Fuels, 2015, 29(11):6988-6998. doi: 10.1021/acs.energyfuels.5b01537
    [21] HUANG Y Q, YIN X L, WU C Z. Effects of metal catalysts on CO2 gasification reactivity of biomass char[J]. Biotechnol Adv, 2009, 27(5):568-572. doi: 10.1016/j.biotechadv.2009.04.013
    [22] LI S F, CHENG Y L. Catalytic gasification of gas-coal char in CO2[J]. Fuel, 1995, 74(3):456-458. doi: 10.1016/0016-2361(95)93482-S
    [23] 张恒, 李俊国, 郭帅, 王志青, 张永奇, 房倚天.煤灰对玉米秸秆焦气化过程中固钾及其灰熔融性的研究[J].燃料化学学报, 2018, 46(9):1055-1062. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201809004

    ZHANG Heng, LI Jun-guo, GUO Shuai, WANG Zhi-qing, ZHANG Yong-qi, FANG Yi-tian. Influence of coal ash on potassium retention and ash fusibility during gasification of corn stalk coke[J]. J Fuel Chem Technol, 2018, 46(9):1055-1062. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201809004
    [24] TURN S Q, KINOSHITA C M, ISHIMURA D M, ZHOU J, HIRAKI T T, MASUTANI S M. A review of sorbent materials for fixed bed alkali getter systems in biomass gasifier combined cycle power generation applications[J]. J Inst Energy, 1998, 71(489):163-177. http://www.researchgate.net/publication/283156645_A_review_of_sorbent_materials_for_fixed_bed_alkali_getter_systems_in_biomass_gasifier_combined_cycle_power_generation_applications
    [25] ZHOU C C, LIU G J, YAN Z C, FANG T, WANG R W. Transformation behavior of mineral composition and trace elements during coal gangue combustion[J]. Fuel, 2012, 97:644-650. doi: 10.1016/j.fuel.2012.02.027
    [26] TANG J, WANG J. Catalytic steam gasification of coal char with alkali carbonates:A study on their synergic effects with calcium hydroxide[J]. Fuel Process Technol, 2016, 142:34-41. doi: 10.1016/j.fuproc.2015.09.020
    [27] JIANG M Q, HU J, WANG J. Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char:Effect of hydrothermal pretreatment[J]. Fuel, 2013, 109:14-20. doi: 10.1016/j.fuel.2012.06.100
    [28] 管嵘清, 杜梅芳, 李洁, 陈玉爽, 张忠孝.煤灰中霞石与钠长石的光学性质对熔融特性影响[J].上海理工大学学报, 2010, 32(6):597-601. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shlgdxxb201006021

    GUAN Rong-qing, DU Mei-fang, LI Jie, CHEN Yu-shuang, ZHANG Zong-xiao. Impact of optical properties of nepheline and albite onfusion characteristics in coal ash[J]. Univ Shanghai Sci Technol, 2010, 32(6):597-601. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shlgdxxb201006021
    [29] 李帆, 邱建荣, 郑楚光.煤中矿物质对灰熔融温度影响的三元相图分析[J].华中理工大学学报, 1996, 24(10):97-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600254343

    LI Fan, QIU Jian-rong, ZHENG Chu-guang. The effect of mineral matter in coal on the ash melting point with ternary phase diagram[J]. J Huazhong Univ Sci Technol, 1996, 24(10):97-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600254343
    [30] WANG Y W, WANG Z Q, HUANG J J, FANG Y T. Improved catalyst recovery combined with extracting alumina from Na2CO3-catalyzed gasification ash of a high-aluminium coal char[J]. Fuel, 2018, 234:101-109. doi: 10.1016/j.fuel.2018.07.019
    [31] FOO C T, MAHMOOD C S, SALLEH M A M. The study of aluminum loss and consequent phase transformation in heat-treated acid-leached kaolin[J]. Mater Charact, 2011, 62(4):373-377. doi: 10.1016/j.matchar.2011.01.017
    [32] OKADA K, ARIMITSU N, KAMESHIMA Y, NAKAJIMA A, MACKENZIE K J D. Preparation of porous silica from chlorite by selective acid leaching[J]. Appl Clay Sci, 2005, 30(2):116-124. doi: 10.1016/j.clay.2005.04.001
    [33] LIU M Z, YANG H M. Large surface area mesoporous Al2O3 from kaolin methodology and characterization[J]. Appl Clay Sci, 2010, 50(4):554-559. doi: 10.1016/j.clay.2010.10.012
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  46
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-27
  • 修回日期:  2020-09-05
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-09-10

目录

    /

    返回文章
    返回