留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油泥焦流化床燃烧NOx释放特性及控制

温宏炎 张光义 纪德馨 万利锋 张亮 张玉明 高士秋

温宏炎, 张光义, 纪德馨, 万利锋, 张亮, 张玉明, 高士秋. 油泥焦流化床燃烧NOx释放特性及控制[J]. 燃料化学学报(中英文), 2019, 47(11): 1401-1408.
引用本文: 温宏炎, 张光义, 纪德馨, 万利锋, 张亮, 张玉明, 高士秋. 油泥焦流化床燃烧NOx释放特性及控制[J]. 燃料化学学报(中英文), 2019, 47(11): 1401-1408.
WEN Hong-yan, ZHANG Guang-yi, JI De-xin, WAN Li-feng, ZHANG Liang, ZHANG Yu-ming, GAO Shi-qiu. Emission characteristics and control of NOx from oil sludge char fluidized bed combustion[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1401-1408.
Citation: WEN Hong-yan, ZHANG Guang-yi, JI De-xin, WAN Li-feng, ZHANG Liang, ZHANG Yu-ming, GAO Shi-qiu. Emission characteristics and control of NOx from oil sludge char fluidized bed combustion[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1401-1408.

油泥焦流化床燃烧NOx释放特性及控制

详细信息
  • 中图分类号: X511

Emission characteristics and control of NOx from oil sludge char fluidized bed combustion

More Information
  • 摘要: 为无害化处理油泥焦,采用小型流化床反应器,研究了不同温度、不同颗粒粒径下油泥焦的燃烧氮氧化物释放特性,并借助空气分级燃烧技术降低NOx排放。SEM电镜和物理吸附结果表明,油泥焦颗粒表面结构致密、孔道稀疏,不利于其内部有机质充分燃烧。燃烧实验结果表明,油泥焦燃烧产生的NOx主要来源于焦炭氮,来自挥发性氮的较少。适当降低燃烧温度、减小颗粒粒径既能保证油泥焦充分燃烧,又能抑制氮氧化物排放。实施空气分级燃烧时,通过优化过量空气系数、二次风比例和二次风入口位置,能够获得显著的NOx减排效果,同时可以有效抑制飞灰产生,有助于烟气终极处理。
  • 图  1  流化床燃烧实验装置流程示意图

    Figure  1  Flowchart of the fluidized bed combustion experiment device

    图  2  油泥焦燃烧过程中NOx排放质量浓度随时间的变化

    Figure  2  Concentration variation of NOx emission with time on line during the oil sludge char combustion

    图  3  不同温度下NOx排放质量浓度和N转化率的变化

    Figure  3  Variation of NOx emission and N conversion at different combustion temperatures

    图  4  不同粒径的油泥焦燃烧的NOx质量浓度和N转化率

    Figure  4  Concentration of NOx emission and conversion of N during combustion the oil sludge char with different particle sizes

    图  5  油泥焦的SEM照片

    Figure  5  SEM images of the oil sludge char

    图  6  不同二次风比例条件下的NOx排放和N转化率变化

    Figure  6  Variation of NOx emission and N conversion with different proportion of secondary air

    图  7  不同ER和二次风位置条件下的NOx排放和N转化率变化

    Figure  7  Variation of NOx emission and N conversion with different ER and secondary air locations

    (a): particle size: 0.45-0.5 mm; temperatures: 900℃; —■—: 1.1; —●—: 1.3; —▲—: 1.5; : 1.7 (b): : NOx concentration of A; : NOx concentration of B; : NOx concentration of C; —□—: fuel-N conversion of A; —○—: fuel-N conversion of B; —△—: fuel-N conversion of C

    图  8  无二次风时各ER条件下的CO排放质量浓度

    Figure  8  CO emission concentration at different ER with not secondary air

    图  9  不同ER和二次风位置条件下的飞灰量

    Figure  9  Fly ash amount at different ER and secondary air locations

    表  1  油泥焦的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of the oil sludge char

    Proximate analysis war/% Ultimate analysis wd/% QHHV
    /(MJ·kg-1)
    M V A FC* N C H S O*
    2.37 4.52 75.64 17.47 0.53 16.29 0.48 0.35 4.87 5.31
    ar: as received basis; d: dry basis;*: calculated by difference
    下载: 导出CSV

    表  2  油泥焦灰的熔融特性

    Table  2  Melting properties of the oil sludge char ash

    Initiator DT ST HT FT
    Temperature t/℃ 1100 1150 1180 1420
    下载: 导出CSV

    表  3  油泥焦灰的XRF分析

    Table  3  XRF analysis of the oil sludge char ash

    Component Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 MnO Fe2O3 Others
    Percent w/% 2.07 2.49 13.70 60.73 0.62 2.04 2.79 8.22 0.75 0.14 5.98 0.47
    下载: 导出CSV

    表  4  油泥焦原料的BET分析

    Table  4  BET analysis of the raw materials of the oil sludge char

    Parameter Value
    Surface area A/(m2·g-1) 12.344
    Pore volume v/(cm3·g-1) 0.034
    Pore size d/nm 10.992
    下载: 导出CSV
  • [1] XU N, WANG W X, HAN P F, LU X P. Effects of ultrasound on oily sludge deoiling[J]. J Hazard Mater, 2009, 171(1/3):914-917. http://cn.bing.com/academic/profile?id=ef2e5219db957c03c1b5914182fd829b&encoded=0&v=paper_preview&mkt=zh-cn
    [2] HU G J, LI J B, ZENG G M. Recent development in the treatment of oily sludge from petroleum industry:A review[J]. J Hazard Mater, 2013, 261:470-490. doi: 10.1016/j.jhazmat.2013.07.069
    [3] SCHMIDT H, KAMINSKY W. Pyrolysis of oil sludge in a fluidised bed reactor[J]. Chemosphere, 2001, 45:285-290. doi: 10.1016/S0045-6535(00)00542-7
    [4] SHEN L, ZHANG D K. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed[J]. Fuel, 2003, 82:465-472. doi: 10.1016/S0016-2361(02)00294-6
    [5] GONG Z Q, DU A, WANG Z B, FANG P W. Experimental study on pyrolysis characteristics of oil sludge with a tube furnace reactor[J]. Energy Fuels, 2017, 31(8):8102-8108. doi: 10.1021/acs.energyfuels.7b01363
    [6] 高昌胜, 魏茂, 蒋文广, 李相国, 吕阳.基于含油污泥热解残渣的路基材料制备与性能评价[J].硅酸盐通报, 2019, 38(6):1895-1900. http://d.old.wanfangdata.com.cn/Periodical/gsytb201906043

    GAO Chang-sheng, WEI Mao, JIANG Wen-guang, LI Xiang-guo, LV Yang. Preparation and performance evaluation of roadbed materials based on pyrolysis residue of oily sludge[J]. Bull Chin Ceram Soc, 2019, 38(6):1895-1900. http://d.old.wanfangdata.com.cn/Periodical/gsytb201906043
    [7] ROS A, LILLO-RÍDENAS M A, FUENTE E, MONTES-MORÁN M A, MARTÍN M J, LINARES-SOLANO A. High surface area materials prepared from sewage sludge-based precursors[J]. Chemosphere, 2006, 65(1):132-140. doi: 10.1016/j.chemosphere.2006.02.017
    [8] 彭海军, 李志光, 夏兴良, 郭开, 苏猛飞, 何纯莲.污泥热解残渣催化市政破膜污泥的热解作用[J].环境化学, 2014, 33(3):508-514. http://d.old.wanfangdata.com.cn/Periodical/hjhx201403020

    PENG Hai-jun, LI Zhi-guang, XIA Xin-liang, GUO Kai, SU Meng-fei, HE Chun-lian. Catalysis of sludge residual carbon to municipal disintegration-membrance sludge pyrolysis[J]. Environ Chem, 2014, 33(3):508-514. http://d.old.wanfangdata.com.cn/Periodical/hjhx201403020
    [9] ZHANG H F, LV C X, LI J, WU Q, HU Y K, DONG C Q. Solid waste mixtures combustion in a circulating fluidized bed:Emission properties of NOx, dioxin, and heavy metals[J]. Energy Proc, 2015, 75:987-992. doi: 10.1016/j.egypro.2015.07.322
    [10] FAN W D, LIN Z C, LI Y Y, KUANG J G. Effect of air-staging on anthracite combustion and NOx formation[J]. Energy Fuels, 2009, 23(1):111-120. doi: 10.1021/ef800343j
    [11] MLADENOVIĆ M, DAKIĆ D, NEMODA S. The combustion of biomass-The impact of its types and combustion technologies on the emission of nitrogen oxide[J]. Hem Ind, 2015, 70:33-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004749785
    [12] TRIKKELA A, KUUSIKA R, MARTINS A, PILU T, STENCEL J M. Utilization of estonian oil shale semicoke[J]. Fuel Process Technol, 2008, 89:756-763. doi: 10.1016/j.fuproc.2008.01.010
    [13] 洪勇, 卢啸风, 王泉海, 杨宇.油页岩半焦在流化床内的燃烧特性研究[J].热能动力工程, 2016, 31(3):92-96. http://d.old.wanfangdata.com.cn/Periodical/rndlgc201603015

    HONG Yong, LU Xiao-feng, WANG Quan-hai, YANG Yu. Study on combustion characteristics of oil shale semi-coke in fluidized bed[J]. J Eng Therm Energy Power, 2016, 31(3):92-96. http://d.old.wanfangdata.com.cn/Periodical/rndlgc201603015
    [14] BIEŃ J D, BIEŃ J B, NOWAK W. Combustion of char received after sewage sludge pyrolysis in the circulating fluidized bed[J]. J Chin Inst Chem Eng, 2001, 32(5):415-418. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c45e41423de9e5e5d945c08aaee635bb
    [15] 胡文斌, 杨海瑞, 吕俊复, 岳光溪, 张建胜.煤着火特性的热重分析研究[J].电站系统工程, 2005, 21(2):8-9. doi: 10.3969/j.issn.1005-006X.2005.02.003

    HU Wen-bin, YANG Hai-rui, LU Jun-fu, YUE Guang-xi, ZHANG Jian-sheng. Study on ignition properties of coals by using thermogravimetry[J]. Power Syst Eng, 2005, 21(2):8-9. doi: 10.3969/j.issn.1005-006X.2005.02.003
    [16] KILPINEN P, HUPA M. Homogeneous N2O chemistry at fluidized bed combustion conditions:A kinetic modeling study[J]. Combust Flame, 1991, 85(1/2):94-104. http://cn.bing.com/academic/profile?id=d737f699db836c6c13e4d1d0fba2ce94&encoded=0&v=paper_preview&mkt=zh-cn
    [17] 张秀霞, 周志军, 周俊虎, 姜树栋, 刘建忠, 岑可法. N2O在焦炭表面异相生成和分解机理的密度泛函数理论研究[J].燃料化学学报, 2011, 39(11):806-811. doi: 10.3969/j.issn.0253-2409.2011.11.002

    ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, JIANG Shu-dong, LIU Jian-zhong, CEN Ke-fa. A density functional study of heterogeneous formation and decomposition of N2O on the surface of char[J]. J Fuel Chem Technol, 2011, 39(11):806-811. doi: 10.3969/j.issn.0253-2409.2011.11.002
    [18] 牛欣, 肖军.污泥化学链燃烧过程中氮迁移转化特性研究[J].燃料化学学报, 2017, 45(4):505-512. doi: 10.3969/j.issn.0253-2409.2017.04.016

    NIU Xin, XIAO Jun. Nitrogen transformation in chemical looping combustion of sewage sludge[J]. J Fuel Chem Technol, 2017, 45(4):505-512. doi: 10.3969/j.issn.0253-2409.2017.04.016
    [19] 葛亚昕, 张光义, 崔丽杰, 高士秋.高含水菌渣流化床燃烧NOx、SO2排放特性[J].化工学报, 2017, 68(8):3250-3257. http://d.old.wanfangdata.com.cn/Periodical/hgxb201708036

    GE Ya-xin, ZHANG Guang-yi, CUI Li-jie, GAO Shi-qiu. Characteristics of NOx and SO2 emission from combustion of antibiotic mycelial residue with high water content in fluidized bed reactor[J]. J Chem Ind Eng (Chin), 2017, 68(8):3250-3257. http://d.old.wanfangdata.com.cn/Periodical/hgxb201708036
    [20] 王苑, 罗永浩, 林鹏云, 季俊杰.煤在燃烧过程中灰层有效扩散系数的实验研究与应用[J].动力工程学报, 2010, 30(8):573-577. http://d.old.wanfangdata.com.cn/Periodical/dlgc201008003

    WANG Yuan, LUO Yong-hao, LIN Peng-yun, JI Jun-jie. Study on gas diffusion through ash layer during coal combustion process and the application[J]. Chin J Power Eng, 2010, 30(8):573-577. http://d.old.wanfangdata.com.cn/Periodical/dlgc201008003
    [21] 周志军, 周宁, 陈瑶姬, 周俊虎, 刘建忠, 岑可法.低挥发分煤燃烧特性及NOx生成规律的试验研究[J].中国电机工程学报, 2010, 30(29):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201029009

    ZHOU Zhi-jun, ZHOU Ning, CHEN Yao-ji, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. Experimental research on the combustion and NOx generation characteristics of low volatile coal[J]. Proc CSEE, 2010, 30(29):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201029009
    [22] 陈萍, 顾明言, 汪嘉伦, 卢坤, 林郁郁.含氮煤焦还原NO反应路径研究[J].燃料化学学报, 2019, 47(3):279-286. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201903004

    CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction pathways for the reduction of NO by nitrogen-containing char[J]. J Fuel Chem Technol, 2019, 47(3):279-286. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201903004
    [23] ISHIZUKA H, HYVARINEN K, MORITA A, SUZUKI A, YANO K, HIROSE R. Experimental study on NOx reduction in CFB coal combustion[C]//Circulating Fluidized Bed Technology. Proceedings of the Second International Conference On Circulating Fluidized Beds. France: Compiégne, 1988: 437-444.
    [24] WERTHER J, OGADA T. Sewage sludge combustion[J]. Proc Energy Combust Sci, 1999, 25(1):55-116. doi: 10.1016/S0360-1285(98)00020-3
    [25] LEDESMA E B, NELSON P F, MACKIE J C. An experimental and kinetic modeling study of the reduction of NO by coal volatiles in a flow reactor[J]. Proc Combust Inst, 2000, 28(2):2345-2351. doi: 10.1016/S0082-0784(00)80646-3
    [26] PERMCHART W, KOUPRIANOV V I. Emission performance and combustion efficiency of a conical fliodized-bed combustor firing various biomass fuels[J]. Bioresour Technol, 2004, 92(1):83-91. doi: 10.1016/j.biortech.2003.07.005
    [27] 马辉, 赵俊平, 张小东.优化二次风布置降低NOx放浓度[J].电站系统工程, 2015, 31(1):71-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxtgc201501023

    MA Hui, ZHAO Jun-ping, ZHANG Xiao-dong. Optimization of secondary air layout to reduce NOx emissions[J]. Power Syst Eng, 2015, 31(1):71-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxtgc201501023
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  144
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-26
  • 修回日期:  2019-09-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-11-10

目录

    /

    返回文章
    返回