留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无定形硅铝载体的酸性对费托蜡加氢裂化反应中柴油选择性的影响

李涛 车晓莉 云一峰 陶智超 赵春利 杨勇 李永旺

李涛, 车晓莉, 云一峰, 陶智超, 赵春利, 杨勇, 李永旺. 无定形硅铝载体的酸性对费托蜡加氢裂化反应中柴油选择性的影响[J]. 燃料化学学报(中英文), 2017, 45(5): 589-595.
引用本文: 李涛, 车晓莉, 云一峰, 陶智超, 赵春利, 杨勇, 李永旺. 无定形硅铝载体的酸性对费托蜡加氢裂化反应中柴油选择性的影响[J]. 燃料化学学报(中英文), 2017, 45(5): 589-595.
LI Tao, CHE Xiao-li, YUN Yi-feng, TAO Zhi-chao, ZHAO Chun-li, YANG Yong, LI Yong-wang. Study of the relationship between the acidity of amorphous silica-alumina supports and diesel selectivity in Fischer-Tropsch wax hydrocracking[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 589-595.
Citation: LI Tao, CHE Xiao-li, YUN Yi-feng, TAO Zhi-chao, ZHAO Chun-li, YANG Yong, LI Yong-wang. Study of the relationship between the acidity of amorphous silica-alumina supports and diesel selectivity in Fischer-Tropsch wax hydrocracking[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 589-595.

无定形硅铝载体的酸性对费托蜡加氢裂化反应中柴油选择性的影响

基金项目: 

中国科学院战略性先导专项 XDA07060200

详细信息
    通讯作者:

    杨勇, Tel: 010-69667699, E-mail: yyong@sxicc.ac.cn

  • 中图分类号: O643

Study of the relationship between the acidity of amorphous silica-alumina supports and diesel selectivity in Fischer-Tropsch wax hydrocracking

Funds: 

the Strategic Priority Research Program of the Chinese Academy of Sciences XDA07060200

  • 摘要: 利用逐梯度铵交换处理的方法合成了三个织构性质相似、酸性不同的无定形硅铝载体,并通过XRD、N2吸附-脱附、NH3-TPD、Py-FTIR和NMR等手段对载体的物化性质进行了研究。经等体积浸渍负载贵金属Pt,制成加氢裂化催化剂,以费托蜡加氢裂化生产柴油为探针反应,研究了无定形硅铝载体的酸性与柴油选择性之间的构效关系。结果表明,柴油选择性主要与载体的B酸性质有关,受L酸的影响很小;催化剂载体的强B酸含量与柴油选择性成相反关系,载体强B酸的含量越低,柴油选择性越高;催化剂Pt/B-1具有相对最高的柴油选择性,在反应压力7.0 MPa,H2/wax(volume ratio)=1 000:1,LHSV=1.0 h-1,温度为370℃的条件下,C22+转化率为62.52%时,对柴油的选择性达87.12%,具有比文献报道及商业化无定形硅铝载体ASA制备的催化剂Pt/ASA相对更高的活性和柴油选择性。
  • 图  1  无定形硅铝载体的XRD谱图

    Figure  1  XRD patterns of as-synthesized amorphous silica-alumina

    图  2  无定形硅铝载体的N2吸附-脱附曲线和微孔孔径分布

    Figure  2  N2 adsorption-desorption isotherms and micropore size distributions of different amorphous silica-alumina supports

    图  3  无定形硅铝载体的NH3-TPD谱图

    Figure  3  Acidic properties of different amorphous silica-alumina supports upon NH3-TPD

    图  4  无定形硅铝载体的27Al MAS NMR谱图

    Figure  4  27Al MAS NMR spectra of different amorphous silica-alumina supports

    图  5  无定形硅铝载体的29Si MAS NMR谱图

    Figure  5  29Si MAS NMR spectra of different amorphous silica-alumina supports

    a: B-1; b: B-2; c: B-3

    图  6  费托蜡在无定形硅铝催化剂上的加氢裂化选择性

    Figure  6  Selectivity to C10-22 during hydrocracking of Fischer-Tropsch wax on as-synthesized catalysts

    reaction conditions: 7.0 MPa, LHSV=1.0 h-1, H2/wax (volume ratio) = 1 000:1

    图  7  费托蜡在无定形硅铝催化剂上的加氢裂化转化率

    Figure  7  Conversion of Fischer-Tropsch wax on as-synthesized hydrocracking catalysts

    reaction conditions: 7.0 MPa, LHSV=1.0 h-1, H2/wax (volume ratio) = 1 000:1

    表  1  无定形硅铝载体样品的物化性质

    Table  1  Physical and chemical properties of different amorphous silica-alumina samples

    Sample Content w/%a BET surface area A/(m2·g-1) b Pore volume v/(cm3·g-1) Average pore radius d/nm
    Na2O Si/Al micropore external total
    ASA 0.088 1.61 9 208 217 0.70 10.3
    B-1 0.13 31.0 15 261 276 0.94 11.9
    B-2 0.012 31.5 14 253 267 0.89 11.5
    B-3 0.004 4 31.7 14 250 264 0.88 11.6
    a: obtained from final solid product by XRF;
    b: obtained by N2-adsorption at-196 ℃ using micromeritic ASAP2020
    下载: 导出CSV

    表  2  无定形硅铝载体的B酸及L酸含量

    Table  2  Concentration of Brønsted and Lewis acid sites of different samples

    Sample Acidity /(μmolPy·g-1)
    Brønsted Lewis
    200 ℃ 350 ℃ 200-350 ℃ 200 ℃ 350 ℃ 200-350 ℃
    ASA 12.28 1.20 11.08 95.97 38.33 57.64
    B-1 26.84 1.26 25.58 32.90 22.51 10.39
    B-2 28.60 6.23 22.37 42.99 37.18 5.81
    B-3 20.85 4.02 16.83 45.59 35.52 10.07
    下载: 导出CSV
  • [1] 李大东.加氢处理工艺与工程[M].北京:中国石化出版社, 2004: 170-200.

    LI Da-dong. Hydrotreating Technology and Engineedng[M]. Beijing: China Petrochemical Press, 2004: 170-200.
    [2] MAXWEL L. Zeolte catalysis in hydroprocessing technology[J]. Catal Today, 1987, 1(4): 389-417. https://www.researchgate.net/publication/244320344_Zeolite_Catalysis_in_Hydroprocessing_Technology
    [3] WARD J W. Hydrocracking processes and catalysts[J]. Fuel Process Technol, 1993, 35(1/2): 55-85. http://www.sciencedirect.com/science/article/pii/037838209390085I
    [4] LECKEL D. Hydrocracking of iron-catalyzed fischer-tropsch waxes[J]. Energy Fuels, 2005, 19(5): 1795-1803. doi: 10.1021/ef050085v
    [5] 闫朋辉, 陶智超, 郝坤, 王煜丹, 杨勇, 李永旺.金属载体结合方式对镍钨催化剂费托合成蜡加氢裂化性能的影响[J].燃料化学学报, 2013, 41(6): 691-697. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18196.shtml

    YAN Peng-hui, TAO Zhi-chao, HAO Kun, WANG Yu-dan, YANG Yong, LI Yong-wang. Effect of impregnation methods on nickel-tungsten catalysts and its performance on hydrocracking of Fischer-Tropsch wax[J]. J Fuel Chem Technol, 2013, 41(6): 691-697. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18196.shtml
    [6] GAMBA S, PELLEGRINI L A, CALEMMA V, GAMBARO C. Liquid fuels from Fischer-Tropsch wax hydrocracking: Isomer distribution[J]. Catal Today, 2010, 156: 58-64. doi: 10.1016/j.cattod.2010.01.009
    [7] FLINN R A, LARSON O A, BEUTHER H. The mechanism of catalytic hydrocracking[J]. Ind Eng Chem, 1960, 52(2): 153-156. doi: 10.1021/ie50602a034
    [8] COONRADT H L, GARWOOD W E. Mechanism of hydrocracking[J]. Ind Eng Chem, 1964, 3(1): 38-45. doi: 10.1021/i260009a010
    [9] WANG Y D, TAO Z C, WU B S, CHEN H M, XU J, YANG Y, LI Y W. Shape-controlled synthesis of Pt particles and their catalytic performances in the n-hexadecane hydroconversion[J]. Catal Today, 2016, 259: 331-339. doi: 10.1016/j.cattod.2015.06.017
    [10] WANG Y D, TAO Z C, WU B S, XU J, HUO C F, LI K, CHEN H M, YANG Y, LI Y W. Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization[J]. J Catal, 2015, 322: 1-13. doi: 10.1016/j.jcat.2014.11.004
    [11] CORMA A, GRANDE M S, GONZALEZ-ALFARO V, ORCHILLES A V. Cracking Activity and hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY Zeolite[J]. J Catal, 1996, 159: 375-382. doi: 10.1006/jcat.1996.0100
    [12] JIANG J, YANG C, LU Z J, DING J, LI T, LU Y, CAO F H. Characterization and application of a Pt/ZSM-5/SSMF catalyst for hydrocracking of paraffin wax[J]. Catal Commun, 2015, 60: 1-4. doi: 10.1016/j.catcom.2014.10.025
    [13] CUI Q Y, ZHOU Y S, WEI Q, TAO X J, YU G G, WANG Y, YANG J P. Role of the zeolite crystallite size on hydrocracking of vacuum gas oil over NiW/Y-ASA catalysts[J]. Energy Fuels, 2012, 26(8): 4664-4670. doi: 10.1021/ef300544c
    [14] CORMA A, MARTINEZ A, MARTINEZSORIA V, MONTON J B. Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 aluminosilicate catalyst[J]. J Catal, 1995, 153(11): 25-31. https://www.researchgate.net/publication/222073233_Hydrocracking_of_Vacuum_Gasoil_on_the_Novel_Mesoporous_MCM-41_Aluminosilicate_Catalyst
    [15] DONK S V, JANSSEN A H, BITTER J H, JONG K P D. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Cat Rev Sci Eng, 2003, 45(2): 297-319. doi: 10.1081/CR-120023908
    [16] CORMA A, MARTINEZ A, PERGHER S, PERATELLO S, PEREGO C, BELLUSI G. Hydrocracking-hydroisomerization of n-decane on amorphous silica-alumina with uniform pore diameter[J]. Appl Catal A: Gen, 1997, 152(1): 107-125. doi: 10.1016/S0926-860X(96)00338-9
    [17] ALI M.A, TAESUMI T, MASUDA T. Development of heavy oil hydrocracking catalysts using amorphous silica-alumina and zeolites as catalyst supports[J]. Appl Catal A: Gen, 2002, 233(1/2): 77-90.
    [18] 孟庆磊, 刘百军, 盖有东, 何琳琳. Y/ASA复合材料的制备及加氢裂化性能[J].燃料化学学报, 2012, 40(3): 354-358. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17909.shtml

    MENG Qing-lei, LIU Bai-jun, GAI You-dong, HE Lin-lin. Synthesis and hydrocracking performance of Y/ASA comopsite[J]. J Fuel Chem Technol, 2012, 40(3): 354-358. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17909.shtml
    [19] LECKEL D. Selectivity effect of oxygenates in hydrocracking of Fischer-Tropsch waxes[J]. Energy Fuels, 2007, 21(2): 662-667. doi: 10.1021/ef060603h
    [20] LECKEL D, LIWANGA-EHUMBU M. Diesel-selective hydrocracking of an iron-based Fischer-Tropsch wax fraction (C15-C45) using a MoO3-modified noble metal catalyst[J]. Energy Fuels, 2006, 20(6): 2330-2336. doi: 10.1021/ef060319q
    [21] LI B, CALEMMA V, GAMBARO C, BARON G V, DENAYER J F M. Competitive adsorption of C20-C36 linear paraffins on the amorphous microporous silica-alumina ERS-8 in vapor phase and liquid phase[J]. Ind Eng Chem Res, 2010, 49(16): 7541-7549. doi: 10.1021/ie100728h
    [22] LIU S Y, REN J, ZHU S J, ZHANG H K, LV E, XU J, LI Y W. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J]. J Catal, 2015, 330: 485-496. doi: 10.1016/j.jcat.2015.07.027
    [23] 张学军, 王宗贤, 郭爱军, 袁宗胜, 王甫村.高中油型加氢裂化催化剂用Y型沸石的改性研究[J].燃料化学学报, 2008, 36(5): 606-609. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17305.shtml

    ZHANG Xue-jun, WANG Zong-xian, GUO Ai-jun, YUAN Zong-sheng, WANG Fu-cun. Modification of zeolite Y for preparation of the maxinizing middle distillates htdrocracking catalyst[J]. J Fuel Chem Technol, 2008, 36(5): 606-609. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17305.shtml
    [24] YU Z W, ZHENG A, WANG Q, CHEN L, XU J, AMOUREUX J P, DENG F. Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field[J]. Angew Chem Int Ed Eng, 2010, 49(46): 8657-61. doi: 10.1002/anie.201004007
    [25] BOKHOVEN J A, KONINGSBERGER D C, KUNKELER P, BEKKUM H V, KENTGENS A P M. Stepwise dealumination of zeolite Beta at specific T-sites observed with 27Al MAS and 27Al MQ MAS NMR[J]. J Am Chem Soc, 2000, 122: 12842-12847. doi: 10.1021/ja002689d
    [26] IKUNO T, CHAIKITTISILP W, LIU Z, IIDA T, YANABA Y, YOSHIKAWA T, KOHARA S, WAKIHARA T, OKUBO T. Structure-directing behaviors of tetraethylammonium cations toward zeolite beta revealed by the evolution of aluminosilicate species formed during the crystallization process[J]. J Am Chem Soc, 2015, 137(45): 14533-14544. doi: 10.1021/jacs.5b11046
    [27] LECKEL D. Noble metal wax hydrocracking catalysts supported on high-siliceous alumina[J]. Ind Eng Chem Res, 2007, 46(11): 3505-3512. doi: 10.1021/ie0700922
    [28] ZECEVIC J, VANBUTSELE G, DE JONG K P, MARTENS J A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature, 2015, 528(7581): 245-252. doi: 10.1038/nature16173
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  31
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-13
  • 修回日期:  2017-03-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-05-10

目录

    /

    返回文章
    返回