留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe2+协同热活化过一硫酸氢钾盐诱导自由基脱除NO的研究

刘勇 单烨 丁帅 韩宣 刘杨先

刘勇, 单烨, 丁帅, 韩宣, 刘杨先. Fe2+协同热活化过一硫酸氢钾盐诱导自由基脱除NO的研究[J]. 燃料化学学报(中英文), 2018, 46(12): 1520-1527.
引用本文: 刘勇, 单烨, 丁帅, 韩宣, 刘杨先. Fe2+协同热活化过一硫酸氢钾盐诱导自由基脱除NO的研究[J]. 燃料化学学报(中英文), 2018, 46(12): 1520-1527.
LIU Yong, SHAN Ye, DING Shuai, HAN Xuan, LIU Yang-xian. NO removal using oxidation of free radicals produced from Fe2+ and heat synergic activation of oxone[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1520-1527.
Citation: LIU Yong, SHAN Ye, DING Shuai, HAN Xuan, LIU Yang-xian. NO removal using oxidation of free radicals produced from Fe2+ and heat synergic activation of oxone[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1520-1527.

Fe2+协同热活化过一硫酸氢钾盐诱导自由基脱除NO的研究

基金项目: 

国家自然科学基金 U1710108

国家自然科学基金 51576094

详细信息
  • 中图分类号: TK16

NO removal using oxidation of free radicals produced from Fe2+ and heat synergic activation of oxone

Funds: 

the National Natural Science Foundation of China U1710108

the National Natural Science Foundation of China 51576094

More Information
  • 摘要: 在气液撞击流反应器中,研究了Fe2+协同热活化过一硫酸氢钾盐诱导自由基脱除模拟烟气中的NO。考察了主要工艺参数(溶液温度、Fe2+浓度、过一硫酸氢钾盐浓度、溶液pH值、NO入口浓度)对NO脱除效率的影响。分析检测了反应产物和自由基。基于不同系统的对比研究、反应产物检测和活性自由基的捕获,揭示了NO脱除过程的机制和反应路径。结果表明,提高溶液温度、Fe2+浓度和过一硫酸氢钾盐浓度均提高了NO的脱除效率,而提高溶液pH值和NO入口浓度均降低了NO的脱除效率。Fe2+和热对活化过一硫酸氢钾盐产生自由基有显著的协同效应。自由基氧化是NO脱除的主要路径,而过一硫酸氢钾盐直接氧化是次要的脱除路径。Fe2+和热的协同活化体系具有比其他体系高得多的NO脱除率。
  • 图  1  实验装置示意图

    Figure  1  Schematic diagram of experimental apparatus

    1-4: cylinder gases (N2/O2/SO2/NO); 5-8: rotameters; 9: gas blender; 10: gas valves; 11: thermometer; 12: constant temperature device; 13: impinging stream reactor; 14: accelerating tube; 15: atomizing nozzles; 16: solution; 17: circulating pump; 18: flue gas analyzer; 19: scrubber bottle; 20: nozzles distribution

    图  2  溶液温度, Fe2+浓度, oxone浓度, 溶液pH值, NO入口质量浓度(e)对NO脱除效率的影响

    Figure  2  Effects of solution temperature (a), Fe2+ concentration (b), oxone concentration (c), solution pH value (d) and NO concentration (b) on NO removal efficiency

    experimental conditions: Fe2+ concentration, 0.03 mol/L; oxone concentration, 0.35 mol/L; solution temperature, 338 K; solution pH value, 2.09; Liquid-gas ratio, 10.0; O2 concentration, 6.0%; NO concentration, 401 mg/m3; SO2 concentration, 2286 mg/m3

    图  3  电子自旋共振(ESR)捕获技术捕获的羟基和硫酸根自由基

    Figure  3  Capture of SO4-· and ·OH using ESR spectrometer

    (basic experimental conditions are same as those under Figure 2 title)

    图  4  不同脱除系统中NO脱除效率的对照

    Figure  4  Comparison of NO removal efficiency in different removal systems

    (basic experimental conditions are same as those in Figure 2 title)
    A: oxone+298 K; B: oxone+338K; C: oxone-298 K+0.03 mol/L Fe2+; D: oxone-338 K+0.03 mol/L Fe2+; E: 338 K+0.03 mol/L Fe2+

    表  1  反应产物检测和氮元素的质量平衡

    Table  1  Measurement of reaction products and mass balance for N

    10 min SO42- SO32- NO3- NO2- NO2
    Measured anion concentration /(mg·L-1) 4.3× 104 0 5.4 0 0
    Calculated anion concentration /(mg·L-1) - - 6.2 - -
    Relative error /% - - 12.9 - -
    20 min SO42- SO32- NO3- NO2- NO2
    Measured anion concentration /(mg·L-1) 4.8 × 104 0 11.4 0 0
    Calculated anion concentration /(mg·L-1) - - 12.3 - -
    Relative error /% - - 7.3 - -
    下载: 导出CSV
  • [1] SU C Y, RAN X, HU J L, SHAO C L. Photocatalytic process of simultaneous desulfurization and denitrification of flue gas by TiO2-polyacrylonitrile nanofibers[J]. Environ Sci Technol, 2013, 47(20):11562-11568. doi: 10.1021/es4025595
    [2] WEI Z S, NIU H J, JI Y F. Simultaneous removal of SO2 and NOx by microwave with potassium permanganate over zeolite[J]. Fuel Process Technol, 2009, 90(2):324-329. doi: 10.1016/j.fuproc.2008.09.005
    [3] LIU Y X, ZHNAG J, SHENG C D. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Chem Eng J, 2010, 162(3):1006-1011. doi: 10.1016/j.cej.2010.07.009
    [4] LIU Y X, ZHNAG J, PAN J F, TANG A K. Investigation on the removal of NO from SO2 containing simulated flue gas by an ultraviolet/fenton-like reaction[J]. Energy Fuels, 2012, 26(9):5430-5436. doi: 10.1021/ef3008568
    [5] ADEWUYI Y G, KHAN N E. Modeling the ultrasonic cavitation-enhanced removal of nitrogen oxide in a bubble column reactor[J]. AIChE J, 2012, 58(8):2397-2411. doi: 10.1002/aic.12751
    [6] GUO R T, PAN W G, ZHANG X B, REN J X. Removal of NO by using Fenton reagent solution in a lab-scale bubbling reactor[J]. Fuel, 2011, 90(11):3295-3298. doi: 10.1016/j.fuel.2011.06.030
    [7] ZHAO Y, WEN X Y, GUO T X, ZHOU J H. Desulfurization and denitrogenation from flue gas using Fenton reagent[J]. Fuel Process Technol, 2014, 128(10):54-60. http://www.sciencedirect.com/science/article/pii/S0378382014002884
    [8] ZHAO Y, YUAN B, SHEN Y, HAO R, YANG S. Simultaneous removal of NO and SO2 from flue gas using vaporized H2O2 catalyzed by nanoscale zero-valent iron[J]. Environ Sci Pollut R, 2018, 25(25):1-12. doi: 10.1007/s11356-018-2628-4
    [9] LIU Y X, WANG Y. Elemental mercury removal from flue gas using heat and Co2+/Fe2+ coactivated oxone oxidation system[J]. Chem Eng J, 2018, 348(15):464-475.
    [10] XU W, LIU Y X, WANG Q, ZHANG J, PAN J F. Removal of nitric oxide from flue gas using sulfate/hydroxyl radicals from activation of oxone with cobalt and high temperature[J]. Environ Prog Sustainable Energy, 2017, 36(4):1013-1021. doi: 10.1002/ep.v36.4
    [11] LIU Y X, WANG Q. Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor[J]. Environ Sci Technol, 2014, 48(20):12181-12189. doi: 10.1021/es501966h
    [12] ADEWUYI Y G, OWUSU S O. Aqueous absorption and oxidation of nitric oxide with oxone for the treatment of tail gases:Process feasibility, stoichiometry, reaction pathways, and absorption rate[J]. Ind Eng Chem Res, 2003, 42(17):4084-4100. doi: 10.1021/ie020709+
    [13] WU Y. Impinging Streams:Fundamentals, Properties, and Applications[M]. Amsterdam:Elsevier, 2007.
    [14] LIU Y X, WANG Y, YIN Y S, PAN J F, ZHANG J. Oxidation removal of nitric oxide from flue gas using ultraviolet light (UV) and heat coactivated oxone system[J]. Energy Fuels, 2018, 32(2):1999-2008. doi: 10.1021/acs.energyfuels.7b03165
    [15] LIU Y X, WANG Y, YANG W, PAN Z H, WANG Q. Simultaneous oxidation-absorption of nitric oxide and sulfur dioxide using aqueous ammonium persulfate synergistically activated by UV-light and heat[J]. Chem Eng Res Des, 2018, 130(2):321-333. http://www.sciencedirect.com/science/article/pii/S0263876217307177
    [16] ADEWUYI Y G, SAKYI N Y. Removal of nitric oxide by aqueous sodium persulfate simultaneously activated by temperature and Fe2+ in a lab-scale bubble reactor[J]. Ind Eng Chem Res, 2013, 52(41):14687-14697. doi: 10.1021/ie4025177
    [17] ADEWUYI Y G, KHAN M A, SAKYI N Y. Kinetics and modeling of the removal of nitric oxide by aqueous sodium persulfate simultaneously activated by temperature and Fe2+[J]. Ind Eng Chem Res, 2014, 53(2):828-839. doi: 10.1021/ie402801b
    [18] LIU Y X, WANG Y, WANG Q, PAN J F, ZHANG J. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS)[J]. Chemosphere, 2018, 190(1):431-441. http://www.ncbi.nlm.nih.gov/pubmed/29024887
    [19] LIU Y X, XU W, PAN J F, WANG Q. Oxidative removal of NO from flue gas using ultrasound, Mn2+/Fe2+ and heat coactivation of oxone in an ultrasonic bubble reactor[J]. Chem Eng J, 2017, 326(10):1166-1176. http://www.sciencedirect.com/science/article/pii/S1385894717309774
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  52
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-05
  • 修回日期:  2018-09-13
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-12-10

目录

    /

    返回文章
    返回