留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Differences in molecular composition of soluble organic species in two Chinese sub-bituminous coals with different reducibility

WU Fa-peng LU Hao YAN Jie WANG Rui-yu ZHAO Yun-peng WEI Xian-yong

吴法鹏, 鲁浩, 闫洁, 王瑞玉, 赵云鹏, 魏贤勇. 两种不同还原性次烟煤可溶有机质分子组成差异[J]. 燃料化学学报(中英文), 2018, 46(7): 769-777.
引用本文: 吴法鹏, 鲁浩, 闫洁, 王瑞玉, 赵云鹏, 魏贤勇. 两种不同还原性次烟煤可溶有机质分子组成差异[J]. 燃料化学学报(中英文), 2018, 46(7): 769-777.
WU Fa-peng, LU Hao, YAN Jie, WANG Rui-yu, ZHAO Yun-peng, WEI Xian-yong. Differences in molecular composition of soluble organic species in two Chinese sub-bituminous coals with different reducibility[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 769-777.
Citation: WU Fa-peng, LU Hao, YAN Jie, WANG Rui-yu, ZHAO Yun-peng, WEI Xian-yong. Differences in molecular composition of soluble organic species in two Chinese sub-bituminous coals with different reducibility[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 769-777.

两种不同还原性次烟煤可溶有机质分子组成差异

基金项目: 

the National Natural Science Foundation of China 21206188

Open Foundation from State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and Ministry Education MKX201502

National Undergraduate Training Programs for Innovation of China University of Mining and Technology 201610290036

详细信息
  • 中图分类号: TQ530

Differences in molecular composition of soluble organic species in two Chinese sub-bituminous coals with different reducibility

Funds: 

the National Natural Science Foundation of China 21206188

Open Foundation from State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and Ministry Education MKX201502

National Undergraduate Training Programs for Innovation of China University of Mining and Technology 201610290036

More Information
  • 摘要: 本研究首先利用等体积二硫化碳/丙酮溶剂对弱还原性淖毛湖次烟煤(NS)和强还原性不连沟次烟煤(BS)进行萃取得到萃取物和萃余物(ERs),再利用环己烷和甲醇对ERs进行连续热溶得到热溶物(SPs)。NS和BS的萃取物产率分别为10.6%和8.0%,在300℃下NS和BS热溶物的总收率分别为36.3%和11.5%,这说明NS中存在更多可溶有机质。NS和BS萃取物中化合物均以芳烃为主。与BS相比,NS热溶物中脂肪烃和酚类的相对含量明显较高,萃取物中化合物的相对分子量分布范围较宽,而热溶物中化合物的相对分子量分布范围较窄。
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  SPs yields of ERNS (a) and ERBS (b) during STD in cyclohexane and methanol

    Figure  2  FT-IR spectra of the extracts and the SPs

    Figure  3  Group component distribution of SPs

    Figure  4  DART/TOF-MS spectra of EBS and ENS

    Figure  5  Mass spectra of associated molecules in EBS

    Figure  6  Mass spectra of associated molecules in ENS

    Figure  7  DART/TOF-MS spectra of the SPs obtained at 300 ℃

    Table  1  Proximate and ultimate analyses of coal samples

    Sample Proximate analysis w/% ultimate analysis wdaf/% GR, I Rmaxo/% Qgr, maf/(MJ·kg-1)
    Mad Ad Vdaf C H N S O*
    NS 6.36 5.37 44.21 68.51 3.66 1.08 0.57 26.18 0 0.36 25.59
    BS 2.01 17.66 35.95 77.50 4.62 1.27 0.84 15.77 0 0.79 23.32
    Mad: moisture (air dried base); Ad: ash (dry base, i.e., moisture-free base); Vdaf: volatile matter (dry and ash-free base); *: by difference; GR, I: caking index; Rmaxo: average vitrinite reflectance; Qgr, maf: gross calorific value (moist ash-free base)
    下载: 导出CSV

    Table  2  Assignment of adsorption peaks in the FT-IR spectra of the extracts and the SPs[19-22]

    Wavenumber σ/cm-1 Assignment
    3415 phenolic-OH groups stretching vibration
    2925 asymmetric stretching vibration of aliphatic C-H
    2852 symmetric stretching vibration of aliphatic C-H
    1612 stretching vibration of aromatic nucleus C=C
    1454 asymmetric bending vibration of aliphatic C-H
    1373 symmetric bending vibration of aliphatic C-H
    1213 asymmetric stretching vibration of C-O
    1082 symmetric stretching vibration of C-O
    815, 752 out-of-plane deformation vibration of aromatic C-H
    下载: 导出CSV

    Table  3  Arenes identified by GC/MS in CSPs and MSPs

    Compound RC/%
    CSPNS, 300 CSPBS, 300 MSPNS, 300 MSPBS, 300
    Toluene 2.27 21.06
    Ethyl-benzene 1.70 12.71 2.94 4.77
    m-xylene 5.44 27.46 4.44 2.35
    Isopropyl-benzene 0.87 0.48 1.34
    Propyl-benzene 0.43
    Ethylmethylbenzene 1.90 0.26 3.01 2.69
    1, 2, 3-trimethyl-benzene 0.46 2.53 7.77 1.71
    Indan 1.12
    Butyl-benzene 0.18 0.22
    1-ethyl-2, 3-dimethyl-benzene 1.01 2.48
    But-2-enyl-benzene 0.6
    But-1-enyl-benzene 0.57 2.97
    (2-methyl-propenyl)-benzene 0.78
    1, 2, 4, 5-tetramethyl-benzene 0.09 0.15
    (1-methyl-allyl)-benzene 0.12 2.97 1.38
    3-methyl-1H-indene 0.28
    Azulene 0.26
    (1-methyl-but-1-enyl)-benzene 0.25
    Naphthalene 0.48 1.31
    Cyclopentyl-benzene 0.10
    2, 3-dimethyl-1H-indene 1.49
    Methylnaphthalene 0.88 1.84 2.96
    1, 8-dimethyl-1, 2, 3, 4-tetrahydro-naphthalene 0.39
    Heptyl-benzene 0.44
    1, 2, 3-trimethyl-1H-indene 0.23
    1-ethyl-naphthalene 0.09
    2, 6-dimethyl-naphthalene 1.07 1.49 2.81 1.61
    Diphenylmethane 0.14
    Octyl-benzene 0.80
    1, 1, 4, 5, 6-pentamethyl-indan 0.58
    Nonyl-benzene 0.29
    9H-fluorene 0.86
    2-methyl-9H-fluorene 0.17 0.65
    3-methyl-biphenyl 0.22
    7-isopropyl-1-methyl-naphthalene 0.17
    Decyl-benzene 0.15
    4-isopropyl-1, 6-dimethyl-naphthalene 0.16 0.11
    1, 4, 5, 8-tetramethyl-naphthalene 0.4
    Phenanthrene 0.15
    9-methylene-9H-fluorene 0.15
    1-methyl-anthracene 0.40
    2-methyl-phenanthrene 0.25
    Total 23.93 52.36 29.39 41.18
    下载: 导出CSV
  • [1] LI X, ASHIDA, R. MIURA K. Preparation of high-grade carbonaceous materials having similar chemical and physical properties from various low-rank coals by degradative solvent extraction[J]. Energy Fuels, 2012, 26(11):6897-6904. doi: 10.1021/ef301364p
    [2] SHUI H F, XU H Y, ZHOU Y, SHUI T, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G, XU C B. Study on hydro-liquefaction kinetics of thermal dissolution soluble fraction from Shenfu sub-bituminous coal[J]. Fuel, 2017, 200:576-582. doi: 10.1016/j.fuel.2017.03.048
    [3] JONATHAN P M, CAROLINE B C, PAUL P. Interactions of Illinois No. 6 bituminous coal with solvents:A review of solvent swelling and extraction literature[J]. Energy Fuels, 2015, 29(3):1279-1294. doi: 10.1021/ef502548x
    [4] LI X, DEDY E P, RYUICHI A, KOUICHI M. Two-stage conversion of low-rank coal or biomass into liquid fuel under mild conditions[J]. Energy Fuels, 2015, 29:3127-3133. doi: 10.1021/ef502574b
    [5] SÖNMEZ Ö, GÖZMEN B, CEVIK T, GIRAY E S. Optimization of solvent extraction process of some turkish coals using response surface methodology and production of ash-free coal[J]. Asia-Pac J Chem Eng, 2016, 11(6):1001-1011. doi: 10.1002/apj.v11.6
    [6] GRIFFITH J M, CLIFFORD C E B, RUDNICK L R, SCHOBERT H H. Solvent extraction of bituminous coals using light cycle oil:Characterization of diaromatic products in liquids[J]. Energy Fuels, 2009, 23(9):4553-4561. doi: 10.1021/ef9006092
    [7] SHUI H F, WANG Z C, WANG G Q. Effect of hydrothermal treatment on the extraction of coal in the CS2/NMP mixed solvent[J]. Fuel, 2006, 85:1798-1802. doi: 10.1016/j.fuel.2006.02.005
    [8] SÖNMEZ Ö, GIRAYE S. Producing ashless coal extracts by microwave irradiation[J]. Fuel, 2011, 90(6):2125-2131. doi: 10.1016/j.fuel.2011.02.006
    [9] JANUSZ P, LUKASZ S. Effects of pressure on hydrogen transfer from tetralin to coal macerals[J]. Energy Fuels, 2005, 19:348-352. doi: 10.1021/ef040053s
    [10] ZHAO Y P, XIAO J, DING M, EDDINGS E G, WEI XY, FAN X, ZONG Z M. Sequential extraction and thermal dissolution of Baiyinhua lignite in isometric CS2/acetone and toluene/methanol binary solvents[J]. Energy Fuels, 2016, 30(1):47-53. doi: 10.1021/acs.energyfuels.5b01775
    [11] DING M, ZHAO Y P, DOU Y Q, WEI X Y, FAN X, CAO J P, WANG Y L, ZONG Z M. Sequential extraction and thermal dissolution of Shengli lignite[J]. Fuel Process Technol, 2015, 135:20-24. doi: 10.1016/j.fuproc.2014.09.031
    [12] LU H Y, WEI X Y, YU R, PENG Y L, QI X Z, QIE L M, WEI Q, LV J, ZONG Z M, ZHAO W, ZHAO Y P, NI Z H, WU L. Sequential thermal dissolution of Huolinguole lignite in methanol and ethanol[J]. Energy Fuels, 2011, 25(6):2741-2745. doi: 10.1021/ef101734f
    [13] ZHAO Y P, HU H Q, JIN L J, WU B, ZHU S W. Pyrolysis behavior of weakly reductive coals from northwest China[J]. Energy Fuels, 2009, 23:870-875. doi: 10.1021/ef800831y
    [14] WU B HU H Q, HUANG S P, FANG Y M, LI X, MENG M. Extraction of weakly reductive and reductive coals with sub-and supercritical water[J]. Energy Fuels, 2008, 22:3944-3948. doi: 10.1021/ef8002872
    [15] CHANG H Z, WANG C G, ZENG F G, LI J, LI W Y, XIE K C. XPS comparative analysis of coal macerals with different reducibility[J]. J Fuel Chem Technol, 2006, 34(4):389-394. http://cn.bing.com/academic/profile?id=7459d7a0138a9e0bb1b4b0e0309945f6&encoded=0&v=paper_preview&mkt=zh-cn
    [16] ZOU X W, QIN T F, HUANG L H, ZHANG X L, YANG Z, WANG Y. Mechanisms and main regularities of biomass liquefaction with alcoholic solvents[J]. Energy Fuels, 2009, 23(10):5213-5218. doi: 10.1021/ef900590b
    [17] TIAN B, QIAO Y Y, TIAN Y Y, XIE K C, LIU Q, ZHOU H F. FT-IR study on structural changes of different-rank coals caused by single/multiple extraction with cyclohexanone and NMP/CS2 mixed solvent[J]. Fuel Process Technol, 2016, 154:210-218. doi: 10.1016/j.fuproc.2016.08.035
    [18] CANEL M MISIRLIOGLU Z, CANEL E, BOZKURT P A. Distribution and comparing of volatile products during slow pyrolysis and hydropyrolysis of Turkish lignites[J]. Fuel, 2016, 186:504-517. doi: 10.1016/j.fuel.2016.08.079
    [19] XIE X, ZHAO Y, QIU P H, LIN D, QIAN J, HOU H M, PEI J T. Investigation of the relationship between infrared structured and pyrolysis reactivity of coals with different ranks[J]. Fuel, 2018, 216:521-530. doi: 10.1016/j.fuel.2017.12.049
    [20] SONG H J, LIU G R, ZHANG J Z, WU J H. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Process Technol, 2017, 156:454-460. doi: 10.1016/j.fuproc.2016.10.008
    [21] MICHAEL S, THOMAS A. Pyrolysis studies on the structure of ethers and phenols in coal[J]. Fuel, 1983, 62:1321-1326. doi: 10.1016/S0016-2361(83)80017-9
    [22] VACLAVIK L, CAJKA T, HRBEK V, HAJSLOVA J. Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment[J]. Anal Chim Acta, 2009, 645(1/2):56-63. http://cn.bing.com/academic/profile?id=f113cd3925fc16849e5b49d712cb4d53&encoded=0&v=paper_preview&mkt=zh-cn
    [23] WANG Y, LI C M, HUANG L, LIU L, GUO Y L, MA L, LIU S Y. Rapid identification of traditional Chinese herbal medicine by direct analysis in real time (DART) mass spectrometry[J]. Anal Chim Acta, 2014, 845:70-76. doi: 10.1016/j.aca.2014.06.014
    [24] CHERNETSOVA E S, BOCHKOV P O, OVCHAROV M V, ZHOKHOV S S, ABRAMOVICH R A. DART mass spectrometry:A fast screening of solid pharmaceuticals for the presence of an active ingredient, as an alternative for IR spectroscopy[J]. Drug Test Anal, 2010, 2(5/6):292-294. http://cn.bing.com/academic/profile?id=1fbb02b5d1b7c3b6ef7fb3d736765186&encoded=0&v=paper_preview&mkt=zh-cn
    [25] CRAWFORD E, MUSSELMAN B. Evaluating a direct swabbing method for screening pesticides on fruit and vegetable surfaces using direct analysis in real time (DART) coupled to an exactive benchtop orbitrap mass spectrometer[J]. Anal Bioanal Chem, 2012, 403(10):2807-2812. doi: 10.1007/s00216-012-5853-6
    [26] FAN X, WANG C F, YOU C Y, WEI X Y, CHEN L, CAO J P, ZHAO Y P, ZHAO W, WANG Y G, LU J L. Characterization of a Chinese lignite and the corresponding derivatives using direct analysis in real time quadrupole time-of-flight mass spectrometry[J]. RSC Adv, 2016, 6:105780-105785. doi: 10.1039/C6RA23899H
    [27] WANG C F, FAN X, ZHANG F, WANG S Z, ZHAO Y P, ZHAO X Y, ZHAO W, ZHU T G, LU J L, WEI X Y. Characterization of humic acids extracted from a lignite and interpretation for the mass spectra[J]. RSC Adv, 2017, 7:20677-20684. doi: 10.1039/C7RA01497J
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  24
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-29
  • 修回日期:  2018-06-22
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-07-10

目录

    /

    返回文章
    返回