留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu-Al尖晶石的合成及非等温生成动力学分析

刘雅杰 庆绍军 侯晓宁 张磊 高志贤 相宏伟

刘雅杰, 庆绍军, 侯晓宁, 张磊, 高志贤, 相宏伟. Cu-Al尖晶石的合成及非等温生成动力学分析[J]. 燃料化学学报(中英文), 2020, 48(3): 338-348.
引用本文: 刘雅杰, 庆绍军, 侯晓宁, 张磊, 高志贤, 相宏伟. Cu-Al尖晶石的合成及非等温生成动力学分析[J]. 燃料化学学报(中英文), 2020, 48(3): 338-348.
LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, ZHANG Lei, GAO Zhi-xian, XIANG Hong-wei. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 338-348.
Citation: LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, ZHANG Lei, GAO Zhi-xian, XIANG Hong-wei. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 338-348.

Cu-Al尖晶石的合成及非等温生成动力学分析

基金项目: 

国家自然科学基金 21673270

山西省高等学校科技创新项目 2019L0880

晋中学院博士科研经费 2019

详细信息
    通讯作者:

    侯晓宁, Tel: +86-18135188795, E-mail: houxn@sxicc.ac.cn

    高志贤, Tel:+86-13934511591, E-mail:gaozx@lnpu.edu.cn

  • 中图分类号: O643

Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis

Funds: 

The project was supported by the National Natural Science Foundation of China 21673270

Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi 2019L0880

Ph. D. Research Funding of Jinzhong University 2019

  • 摘要: 以氢氧化铜和拟薄水铝石为原料,通过固相法合成了Cu-Al尖晶石,研究了合成温度、合成时间、Cu/Al物质的量比对尖晶石的生成、晶相组成和还原性能的影响。结果表明,配位缺陷的Cu-Al表面尖晶石在400℃已经生成,难还原尖晶石Cu2+和易还原尖晶石Cu2+分别在700和800℃已生成,尖晶石含量随合成温度升高而不断增多,生成Cu/Al物质的量比不等的富Al尖晶石固溶体,至1200℃生成计量比尖晶石CuAl2O4,因此,尖晶石还原性能随合成温度显著变化。Al适度过量时(Cu/Al(molar ratio)=1:3),在950℃生成难还原Cu2+物种含量较高(约为25.9%)的尖晶石固溶体;Cu过量时在1200℃生成CuAlO2,两者都比计量尖晶石CuAl2O4难还原。另外,延长合成时间也能促进尖晶石生成。非等温动力学分析表明,Cu-Al尖晶石的生成随温度表现出三个动力学区域,即700-850、850-950和950-1200℃,表观活化能分别为85.2、304.4和38.1 kJ/mol。当温度低于950℃时生成的产物层较薄,反应物通过产物层的扩散可认为是一维扩散;超过950℃后产物层变厚,反应物接近于三维发射扩散。
  • 图  1  不同样品的TG-DTG曲线

    (a): precursor CA2; (b): copper hydroxide; (c): pseudo-boehmite

    Figure  1  TG-DTG curves of the samples

    图  2  前驱体CA2及其焙烧样品CA2-t的XRD谱图

    Figure  2  XRD patterns of the precursor CA2 and the calcined samples CA2-t

    图  3  CA2-t的(400)晶面放大图

    (a): t=400-1200 ℃; (b): t=400-700 ℃

    Figure  3  Enlarged diffraction lines of (400) plane of CA2-t

    图  4  CA2-t的H2-TPR谱图

    (a): t=400-1200 ℃; (b): t=400-850 ℃

    Figure  4  H2-TPR profiles of the synthesized samples CA2-t

    图  5  Cu/Al物质的量比不等的尖晶石XRD谱图和H2-TPR谱图

    (a): XRD patterns of CAx-950; (b): H2-TPR profiles of CAx-950;(c): XRD patterns of CAx-1200; (d): H2-TPR profiles of CAx-1200

    Figure  5  XRD patterns and H2-TPR profiles of Cu-Al spinels with different Cu/Al molar ratios

    图  6  CA3-t(t′)的物化性质随合成时间的变化

    (a): cell parameters of Cu-Al spinel; (b): spinel content

    Figure  6  Profiles of physicochemical properties of CA3-t(t′) versus synthetic time

    图  7  合成尖晶石CA3-t(t′)的XRD谱图

    (a): CA3-900(t′); (b): CA3-950(t′); (c): CA3-1000(t′)

    Figure  7  XRD patterns of the synthesized spinels CA3-t(t′)

    图  8  Cu-Al尖晶石生成过程示意图

    Figure  8  Formation schematic of Cu-Al spinel

    图  9  Cu-Al尖晶石非等温生成动力学模拟

    Figure  9  Simulation of non-isothermal kinetics of Cu-Al spinel formation process

    表  1  CA2-t Cu-Al尖晶石催化剂的物化性质

    Table  1  Physicochemical properties of the synthesized Cu-Al spinel catalysts CA2-t

    CA2-700 CA2-800 CA2-850 CA2-900 CA2-950 CA2-1000 CA2-1100 CA2-1200
    dCuO /nm[a] 20.7 23.5 26.1 26.3 30.6 33.8 35.4 -
    dspinel /nm[a] -[e] - 6.9 9.8 16.9 22.8 31.8 34.9
    a /nm[b] - - 0.8007 0.8044 0.8062 0.8065 0.8071 0.8078
    I(440)/I(311) - - 0.33 0.26 0.20 0.21 0.19 0.20
    x[c] 0.2866 0.2563 0.2285 0.1351 0.0613 0.0428 0.0196 0.0010
    Xspinel /%[d] 10.9 18.4 25.6 52.4 76.8 83.6 92.4 99.6
    [a]: the crystallite sizes of CuO and Cu-Al spinel; [b]: the cell parameters of Cu-Al spinel; [c]: x value in Cu1-3xV xAl2+2xO4(V: vacancy); [d]: the molar ratio of spinel Cu to total Cu; [e]: the data cannot be obtained by XRD characterization results
    下载: 导出CSV

    表  2  CAx-tCu-Al尖晶石催化剂的物化性质

    Table  2  Physicochemical properties of the synthesized Cu-Al spinel catalysts of CAx-t

    CA-950 CA2-950 CA3-950 CA9-950 CA-1200 CA2-1200 CA3-1200 CA9-1200
    a/nm[a] 0.8061 0.8063 0.8053 0.7980 - 0.8077 0.8076 0.8073
    dspinel /nm[b] 17.5 16.9 12.7 6.0 - 34.9 34.5 30.9
    XCuO /%[c] 59.4 13.4 5.2 0 5.89 0.0 0.0 0.0
    XCu-O-Al /%[c] 4.4 9.8 13.4 44.7 - 0.4 0.2 1.5
    Xspinel /%[c] 36.2 76.8 81.3 55.3 - 99.6 99.8 98.5
    (Cu/Al)spinel[d] 0.362 0.384 0.271 0.061 - 0.498 0.499[e] 0.493[e]
    [a]: the cell parameters of Cu-Al spinel; [b]: the crystallite sizes of CuO and Cu-Al spinel; [c]: the molar ratio of different Cu2+ to total Cu; [d]: the Cu/Al molar ratio of Cu-Al spinel phase; [e]: the value was obtained by the assumption that all excessive Al3+ ions were participated out from spinel solid solution in the form of α-Al2O3, as illustrated in CA3-1200[11]
    下载: 导出CSV

    表  3  Cu-Al尖晶石的非等温合成动力学拟合

    Table  3  Simulation results of Cu-Al spinel non-isothermal formation kinetics

    t/℃ Ⅰ(700-850 ℃) Ⅱ(850-950 ℃) Ⅲ(950-1200 ℃)
    Model Jander G-B Jander G-B Jander G-B
    R2 0.986 0.986 0.991 0.986 0.969 0.992
    E/(kJ·mol-1) 85.2 88.3 304.4 277.9 68.4 38.1
    A/min-1 1.71 2.49 1.19×1011 5.98×109 1.98 4.34×10-2
    下载: 导出CSV
  • [1] 熊文慧, 张文超, 俞春培, 沈瑞琪, 程佳, 叶家海, 秦志春.多孔纳米CoFe2O4的制备及其对高氯酸铵的热分解催化性能[J].物理化学学报, 2016, 32(8):2093-2100. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201608031

    XIONG Wen-hui, ZHANG Wen-chao, YU Chun-pei, SHEN Rui-qi, CHENG Jia, YE Jia-hai, QIN Zhi-chun. Preparation of nanoporous CoFe2O4 and its catalytic performance during the thermal decomposition of ammonium perchlorate[J]. Acta Phys Chim Sin, 2016, 32(8):2093-2100. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201608031
    [2] MAITI S, DAS D, PAL K, LORCA J, SOLER L, COLUSSI S, TROVARELLI A, PRIOLKAR K R, SARODE P R, ASAKURA K, SEIKH M M, GAYEN A. Methanol steam reforming behavior of sol-gel synthesized nanodimensional CuxFe1-xAl2O4 hercynites[J]. Appl Catal A:Gen, 2019, 570:73-83. doi: 10.1016/j.apcata.2018.11.011
    [3] HOU X N, QING S J, LIU Y J, LI L D, GAO Z X, QIN Y. Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 45(1):477-489. http://cn.bing.com/academic/profile?id=1fc1c742bbf31b1f48746c649d745a2f&encoded=0&v=paper_preview&mkt=zh-cn
    [4] LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem, 2018, 10(24):5698-5706. doi: 10.1002/cctc.201801472
    [5] WU J C, LI Y Z, YANG Y, ZHANG Q, YUN L, WU S W, ZHOU C Y, JIANG Z K, ZHAO X J. A heterogeneous single Cu catalyst of Cu atoms confined in the spinel lattice of MgAl2O4 with good catalytic activity and stability for NO reduction by CO[J]. J Mater Chem A, 2019, 7(12):7202-7212. doi: 10.1039/C8TA11528A
    [6] 杜诚, 高小惠, 陈卫.铜基非贵金属氧还原电催化剂的研究进展[J].催化学报, 2016, 37(7):1049-1061. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201607010

    DU Cheng, GAO Xiao-hui, CHEN Wei. Recent developments in copper-based, non-noble metal electrocatalysts for the oxygen reduction reaction[J]. Chin J Catal, 2016, 37(7):1049-1061. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201607010
    [7] LIU Q, ZHANG X X, ZHANG B, LUO Y L, CUI G W, XIE F Y, SUN X P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod[J]. Nanoscale, 2018, 10(30):14386-14389. doi: 10.1039/C8NR04524K
    [8] 崔柏, 林红, 李建保, 赵晓冲, 李文迪. ZnCo2O4纳米粒子的可见光催化性能[J].物理化学学报, 2011, 27(10):2411-2415. doi: 10.3866/PKU.WHXB20110937

    CUI Bai, LIN Hong, LI Jian-bao, ZHAO Xiao-chong, LI Wen-di. Visible light induced photocatalytic activity of ZnCo2O4 nanoparticles[J]. Acta Phys Chim Sin, 2011, 27(10):2411-2415. doi: 10.3866/PKU.WHXB20110937
    [9] CHANDRASEKARAN S, BOWEN C, ZHANG P X, LI Z L, YUAN Q H, REN X Z, DENG L B. Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting[J]. J Mater Chem A, 2018, 6(24):11078-11104. doi: 10.1039/C8TA03669A
    [10] TATARCHUK T, AL-NAJAR, B, BOUOUDINA M, AHMED M A A. Catalytic and Photocatalytic Properties of Oxide Spinels:In Handbook of Ecomaterials[M]. 1nd ed. Cham:Springer International Publishing, 2018.
    [11] 庆绍军, 侯晓宁, 刘雅杰, 王磊, 李林东, 高志贤. Cu-Ni-Al尖晶石催化甲醇水蒸气重整制氢性能的研究[J].燃料化学学报, 2018, 46(10):1210-1217. doi: 10.3969/j.issn.0253-2409.2018.10.008

    QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lie, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol, 2018, 46(10):1210-1217. doi: 10.3969/j.issn.0253-2409.2018.10.008
    [12] XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed Eng, 2014, 53(44):11886-11889. doi: 10.1002/anie.201405213
    [13] LI G J, GU C T, ZHU W B, WANG X F, YUAN X F, CUI Z J, WANG H L, GAO Z X. Hydrogen production from methanol decomposition using Cu-Al spinel catalysts[J]. J Clean Prod, 2018, 183:415-423. doi: 10.1016/j.jclepro.2018.02.088
    [14] YAHIRO H, NAKAYA K, YAMAMOTO T, SAIKI K, YAMAURA H. Effect of calcination temperature on the catalytic activity of copper supported on γ-alumina for the water-gas-shift reaction[J]. Catal Commun, 2006, 7(4):228-231. doi: 10.1016/j.catcom.2005.11.004
    [15] FAUNGNAWAKIJ K, KIKUCHI R, SHIMODA N, FUKUNAGA T, EGUCHI K. Effect of thermal treatment on activity and durability of CuFe2O4-Al2O3 composite catalysts for steam reforming of dimethyl ether[J]. Angew Chem Int Ed Eng, 2008, 47(48):9314-9317. doi: 10.1002/anie.200802809
    [16] SHIMIZU K, MAESHIMA H, YOSHIDA H, SATSUMA A, HATTORI T. Spectroscopic characterisation of Cu-Al2O3 catalysts for selective catalytic reduction of NO with propene[J]. Phys Chem Chem Phys, 2000, 2(10):2435-2439. doi: 10.1039/b000943l
    [17] MATSUKATA M, UEMIYA S, KIKUCHI E. Copper-alumina spinel catalysts for steam reforming of methanol[J]. Chem Lett, 1988, 17(5):761-764. doi: 10.1246/cl.1988.761
    [18] KIM T W, SONG M W, KOH H L, KIM K L. Surface properties and reactivity of Cu/γ-Al2O3 catalysts for NO reduction by C3H6:Influences of calcination temperatures and additives[J]. Appl Catal A:Gen, 2001, 210(1/2):35-44. https://www.sciencedirect.com/science/article/abs/pii/S0926860X00008012
    [19] 李光俊, 郗宏娟, 张素红, 谷传涛, 庆绍军, 侯晓宁, 高志贤.尖晶石CuM2O4(M=A1、Fe、Cr)催化甲醇重整反应的特性[J].燃料化学学报, 2012, 40(12):1466-1471. doi: 10.3969/j.issn.0253-2409.2012.12.009

    LI Guang-jun, XI Hong-juan, ZHANG Su-hong, GU Chuan-tao, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Catalytic characteristics of spinel CuM2O4(M=A1、Fe、Cr) for the stream reforming of methanol[J]. J Fuel Chem Technol, 2012, 40(12):1466-1471. doi: 10.3969/j.issn.0253-2409.2012.12.009
    [20] LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol, 2017, 7(21):5069-5078. doi: 10.1039/C7CY01236E
    [21] LIU Y J, QINGS J, HOU X N, FENG G, ZHANG R B, WANG X, WANG S M, GAO Z X, XIANG H W. Synthesis and structural characterization of CuAl2O4 spinel with an unusual cation distribution[J]. J Mater Appl, 2018, 7(2):82-89.
    [22] VLAEV T, MARKOVSKA I G, LYUBCHEV L A. Non-isothermal kinetics of pyrolysis of rice husk[J]. Thermochim Acta, 2003, 406(1/2):1-7. http://cn.bing.com/academic/profile?id=70a0ab9589ac81506e546697437180e5&encoded=0&v=paper_preview&mkt=zh-cn
    [23] ÓRFĀO J J M, MARTINS F G. Kinetic analysis of thermogravimetric data obtained under linear temperature programming-a method based on calculations of the temperature integral by interpolation[J]. Thermochim Acta, 2002, 390(1/2):195-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c6ffa69d5c744ca227b5737102afd294
    [24] STROHMEIER B R, LEYDEN D E, FIELD R S, HERCULES D M. Surface spectroscopic characterization of Cu/Al2O3 catalysts[J]. J Catal, 1985, 94(2):514-530. doi: 10.1016/0021-9517(85)90216-7
    [25] FURUHASHI H, INAGAKI M, NAKA S. Determination of cation distribution in spinels by X-ray diffraction method[J]. J Inorg Nucl Chem, 1973, 35(8):3009-3014. doi: 10.1016/0022-1902(73)80531-7
    [26] SEO J G, YOUN M H, CHUNG J S, SONG I K. Effect of calcination temperature of mesoporous nickel-alumina catalysts on their catalytic performance in hydrogen production by steam reforming of liquefied natural gas(LNG)[J]. J Ind Eng Chem, 2010, 16(5):795-799. doi: 10.1016/j.jiec.2010.05.010
    [27] 张玉红, 熊国兴, 盛世善, 刘盛林, 杨维慎. NiO/γ-Al2O3催化剂中NiO与γ-Al2O3间的相互作用[J].物理化学学报, 1999, 15(8):735-741. doi: 10.3866/PKU.WHXB19990813

    ZHANG Yu-hong, XIONG Guo-xing, SHENG Shi-shan, LIU Sheng-lin, YANG Wei-shen. Interaction of NiO with γ-Al2O3 supporter of NiO/γ-Al2O3 catalysts[J]. Acta Phys-Chim Sin, 1999, 15(8):735-741. doi: 10.3866/PKU.WHXB19990813
    [28] GHARAGOZLOU M. Synthesis, characterization and influence of calcination temperature on magnetic properties of nanocrystalline spinel Co-ferrite prepared by polymeric precursor method[J]. J Alloys Compd, 2009, 486(1/2):660-665. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d70b46c990cb4e8277798a05afc5cbfb
    [29] CABO M, PELLICER E, ROSSINYOL E, CASTELL O, SURIÑACH S, BARÓ M D. Mesoporous NiCo2O4 spinel:influence of calcination temperature over phase purity and thermal stability[J]. Cryst Growth Des, 2009, 9(11):4814-4821. doi: 10.1021/cg900648q
    [30] 熊礼龙, 徐友龙, 张成, 陶韬. Al3+对尖晶石型LiMn2O4正极材料的表面掺杂包覆改性[J].物理化学学报, 2012, 28(5):1177-1182. doi: 10.3866/PKU.WHXB201203092

    XIONG L L, XU Y L, ZHANG C, TAO T. Doping-coating surface modification of spinel LiMn2O4 cathode material with Al3+ for lithium-ion batteries[J]. Acta Phys Chim Sin, 2012, 28(5):1177-1182. doi: 10.3866/PKU.WHXB201203092
    [31] QING S J, HOU X N, LIU Y J, LI L D, WANG X, GAO Z X, FAN W B. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming[J]. Chem Commun, 2018, 54(86):12242-12245. doi: 10.1039/C8CC06600K
    [32] JAMES T, PADMANABHAN M, WARRIER K G K, SUGUNAN S. CuAl2O4 formation and its effect on α-Al2O3 phase evolution on calcination of metal ion doped boehmite xerogels[J]. Mater Chem Phys, 2007, 103(2/3):248-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a03992c064a870c2eeeb25a194220fe9
    [33] KHAWAM A, FLANAGAN D R. Solid-state kinetic models:Basics and mathematical fundamentals[J]. J Phys Chem B, 2006, 110(35):17315-17328. doi: 10.1021/jp062746a
    [34] CANIGLIA S, BARNA G L. Handbook of Industrial Refractories Technology: Pprinciples, Types, Properties and Applications[M]. William Andrew, 1992.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  76
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-02-15
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-03-10

目录

    /

    返回文章
    返回