留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酸洗对桦甸油页岩矿物质以及有机结构的影响

迟铭书 王擎 李松阳 刘奇 查伯宇

迟铭书, 王擎, 李松阳, 刘奇, 查伯宇. 酸洗对桦甸油页岩矿物质以及有机结构的影响[J]. 燃料化学学报(中英文), 2017, 45(12): 1424-1433.
引用本文: 迟铭书, 王擎, 李松阳, 刘奇, 查伯宇. 酸洗对桦甸油页岩矿物质以及有机结构的影响[J]. 燃料化学学报(中英文), 2017, 45(12): 1424-1433.
CHI Ming-shu, WANG Qing, LI Song-yang, LIU Qi, CHA Bo-yu. Influence of demineralization on minerals and organic structure in Huadian oil shale[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1424-1433.
Citation: CHI Ming-shu, WANG Qing, LI Song-yang, LIU Qi, CHA Bo-yu. Influence of demineralization on minerals and organic structure in Huadian oil shale[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1424-1433.

酸洗对桦甸油页岩矿物质以及有机结构的影响

基金项目: 

国家自然科学基金 51676032

详细信息
  • 中图分类号: TK16

Influence of demineralization on minerals and organic structure in Huadian oil shale

Funds: 

the National Natural Science Foundation of China 51676032

More Information
  • 摘要: 基于FT-IR和XRD技术研究了逐级酸洗对桦甸油页岩矿物质以及有机结构的影响。结果表明,采用HCl/HF酸洗方法可以有效去除黄铁矿以外的矿物质,但盐酸处理破坏油页岩中高岭石的立体框架结构。油页岩中有机质以脂肪族结构为主,存在形式为无序非晶态聚合体且变质程度较低。酸洗处理对油页岩有机大分子结构影响很小,但对有机结构产生了一定的影响。盐酸处理主要影响含氧官能团和苯环结构,会生成大量羧酸并破坏苯环的多环结构,但对脂肪族化合物的影响较小。氢氟酸处理主要对脂肪族化合物产生影响,破坏脂肪链的桥键结构,脂肪链断裂变短,进而使样品中脂肪族化合物含量降低。盐酸和氢氟酸处理均会破坏油页岩的羟基官能团,尤其对自缔合羟基氢键影响最大。
  • 图  1  油页岩灰的红外光谱谱图

    Figure  1  FT-IR spectrum of oil shale ash

    图  2  油页岩灰的红外二阶导数谱图

    Figure  2  Second derivative FT-IR spectrum of oil shale ash

    图  3  各级酸洗样品的红外光谱谱图

    Figure  3  FT-IR spectra of oil shale before and after acid treatment

    图  4  逐级酸洗油页岩的XRD谱图

    Figure  4  XRD spectra of oil shale before and after acid treatment

    K:Kaolinite; S:Serpentine; Q:Quartz; C:Calcite; M:Muscovite; P:Prite; FS:Soda felspar

    图  5  样品羟基红外光谱原图与分峰拟合图

    Figure  5  Raw and curve-fitting FT-IR spectra of hydroxyl before and after acid treatment in samples

    图  6  样品含氧官能团红外光谱原图与分峰拟合图

    Figure  6  Raw and curve-fitting FT-IR spectra of oxygen-containing functional groups in samples

    图  7  样品脂肪族官能团红外光谱原图与分峰拟合图

    Figure  7  Raw and curve-fitting FT-IR spectra of aliphatic in samples

    表  1  桦甸油页岩的工业分析和物质组成分析

    Table  1  Proximate analyses and composition of Huadian oil shale

    Proximate analyses wad/% Composition of oil shale w/%
    M 3.84 kerogen 35.18
    A 49.12 carbonate 27.18
    V 42.25 silica and clay minerals 34.89
    FC 4.79 ignition loss 92.16
    下载: 导出CSV

    表  2  油页岩中矿物质和有机官能团的红外光谱吸收峰

    Table  2  Absorption peak for FT-IR spectra of minerals and organic functional groups in oil shale

    Functional group Absorption bands σ/cm-1
    Kaolinite 3 699, 3 621, 1 100a, 1 032, 1 008a, 937a, 913a, 752a, 526, 695, 470, 421
    Quartz 1 166a, 797, 778
    Muscovite 832a, 713, 412a
    Serpentine 980a, 565a, 504a, 448a
    Calcite 1 799, 1 422, 875
    As .CH3 1 385
    .CH2 1 430
    Aromatic C=C 1 600
    Carboxylic acids 1 709
    :deformation vibration;as:asymmetric;a:hidden absorption peaks detected by second derivative spectra
    下载: 导出CSV

    表  3  样品羟基物质红外光谱分峰拟合各吸收峰参数

    Table  3  Parameters of curve-fitting FT-IR spectrum of hydroxyl in samples

    Part Position σ/cm-1 Assignment Area percentage/%
    HD HDA HDB
    1# 3 107 OH-N 3.17 7.33 7.27
    2# 3 208 ring hydroxyl 12.94 10.95 13.19
    3# 3 298 OH-O 10.92 13.00 22.43
    4# 3 428 OH-OH 37.43 35.41 28.95
    5# 3 559 OH-π 17.02 14.67 14.76
    6# 3 624 free OH 18.49 18.61 13.37
    下载: 导出CSV

    表  4  样品含氧官能团红外光谱分峰拟合各吸收峰参数

    Table  4  Parameters of curve-fitting FT-IR spectrum of oxygen-containing functional groups in samples

    Part Position σ/cm-1 Assignment Area percentage/%
    HD HAD HDB
    1# 1 491 aromatic C=C 18.85 14.39 13.66
    2# 1 514 aromatic ring stretch 16.98 3.27 2.36
    3# 1 541 aromatic ring stretch 13.06 13.65 9.87
    4# 1 569 aromatic ring stretch 10.61 10.02 11.89
    5# 1 597 aromatic C=C 10.36 10.65 13.45
    6# 1 630 highly conjugated C=O 12.97 17.78 19.55
    7# 1 667 conjugated C=O 9.02 12.12 14.67
    8# 1 709 COOH 7.43 16.08 16.55
    9# 1 730 esters 1.68 1.92 4.77
    下载: 导出CSV

    表  5  样品脂肪族物质的定量峰面积以及结构参数

    Table  5  Quantitative peak areas and structure parameters of aliphatic in samples

    Type HD HAD HDB
    Original area 10.04 14.85 17.12
    Correct area 22.32 21.16 18.41
    A2920/(A2860+ A2950) 1.32 1.30 0.71
    下载: 导出CSV

    表  6  样品脂肪族物质红外光谱分峰拟合各吸收峰参数

    Table  6  Parameters of curve-fitting FT-IR spectrum of aliphatic in samples

    Part Position σ/cm-1 Assignment Area percentage/%
    HD HAD HDB
    1# 2 851.775 sym. R2CH2 21.57 20.85 21.82
    2# 2 873.61 sym. R2CH2 6.75 6.41 8.47
    3# 2 894.901 -R3CH 8.23 9.71 6.79
    4# 2 922.813 asym. R2CH2 48.89 48.09 35.24
    5# 2 949.803 asym. RCH3 15.54 14.94 27.65
    下载: 导出CSV
  • [1] 何继来, 王擎.爱沙尼亚葛洛特干馏技术的发展与应用[J].东北电力大学学报, 2016, 36(2):76-80. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dbdl201602014&dbname=CJFD&dbcode=CJFQ

    HE Ji-lai, WANG Qing. The development and application of Estonia gerut carbonization technology[J]. J Northeast Dianli Univ, 2016, 36(2):76-80. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dbdl201602014&dbname=CJFD&dbcode=CJFQ
    [2] 王擎, 张宏喜, 迟铭书, 崔达, 许祥成.蒙脱石对油页岩干酪根热解特性的影响[J].化工进展, 2016, 35(3):766-772. http://www.hgjz.com.cn/CN/abstract/abstract17851.shtml

    WANG Qing, ZHAN Hong-xi, CHI Ming-shu, CUI Da, XU Xiang-cheng. Effect of smectite on the pyrolysis of kerogen isolated from oil shale[J]. Chem Ind Eng Prog, 2016, 35(3):766-772. http://www.hgjz.com.cn/CN/abstract/abstract17851.shtml
    [3] 畅志兵, 初茉, 张超, 白书霞, 林浩, 马良博.固有碳酸盐和硅酸盐对太姥油页岩热解产物的影响[J].化工学报, 2017, 68(4):1582-1589. http://c.wanfangdata.com.cn/periodical/hgxb/2017-4.aspx

    CHANG Zhi-bing, CHU Mo, ZHANG Chao, BAI Shu-xia, LIN Hao, MA Liang-bo. Influence of inherent carbonates and silicates on pyrolytic products of Tailao oil shale[J]. J Chem Ind Eng(China), 2017, 68(4):1582-1589. http://c.wanfangdata.com.cn/periodical/hgxb/2017-4.aspx
    [4] WIJAYAN, ZHANG L. A critical review of coal demineralization and its implication on understanding the speciation of organically bound metals and submicrometer mineral grains in coal[J]. Energy Fuels, 2011, 25:1-16. doi: 10.1021/ef1008192
    [5] 王擎, 张宏喜, 迟铭书, 崔达, 许祥成.矿物质对桦甸油页岩热解产物影响特性[J].燃料化学学报, 2016, 44(3):328-334. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18797.shtml

    WANG Qing, ZHANG Hong-xi, CHI Ming-shu, CUI Da, XU Xiang-cheng. Effect of mine ral matte r on product e volution during pyrolysis of Huadian oil shale[J]. J Fuel Chem Technol, 2016, 44(3):328-334. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18797.shtml
    [6] LARSEN J W, PAN C S, SHAWVER S. Effect of demineralization on the macromolecular structure of coals[J]. Energy Fuels, 1989, 3(5):557-561. doi: 10.1021/ef00017a004
    [7] TEKELY P, NICOLE D, DELPUECH J J, TOTINO E, MULLER J F. Chemical structure changes in coals after low-temperature oxidation and demineralization by acid treatment as revealed by high resolution solid state 13 C NMR[J]. Fuel Process Technol, 1987, 15(87):225-231. http://www.sciencedirect.com/science/article/pii/0378382087900476
    [8] STRYDOM C A, BUNT J R, SCHOBERT H H, RAGHOO M. Changes to the organic functional groups of an inertinite rich medium rank bituminous coal during acid treatment processes[J]. Fuel Process Technol, 2011, 92(4):764-770. doi: 10.1016/j.fuproc.2010.09.008
    [9] 梁虎珍, 王传格, 曾凡桂, 李美芬, 相建华.应用红外光谱研究脱灰对伊敏褐煤结构的影响[J].燃料化学学报, 2014, 42(2):129-137. http://www.wenkuxiazai.com/doc/96c5b9141711cc7930b71645.html

    LIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui, LI Mei-fen, XIANG Jian-hua. Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation[J]. J Fuel Chem Technol, 2014, 42(2):129-137. http://www.wenkuxiazai.com/doc/96c5b9141711cc7930b71645.html
    [10] ZOU X W, YAO J Z, YANG X M, SONG W L, LIN W G. Catalytic effects of metal chlorides on the pyrolysis of lignite[J]. Energy Fuels, 2007, 21(2):619-624. doi: 10.1021/ef060477h
    [11] 张洪, 蒲文秀, 哈斯, 李迎, 刘丹.化学脱灰对低灰煤粉性质的影响[J].工程热物理学报, 2009, 30(4):699-702. http://www.cqvip.com/QK/90922X/200904/29907681.html

    ZHANG Hong, PU Wen-xiu, HA Si, LI Ying, LIU Dan. Influence of acid treatment on the properties of pulverized coals with low ash content[J]. J Eng Thermophys, 2009, 30(4):699-702. http://www.cqvip.com/QK/90922X/200904/29907681.html
    [12] 地质矿产部地质辞典办公室.地质辞典.四, 矿床地质应用地质分册[M].北京:地质出版社, 1986.

    The office of Geological Dictionary of Geology and mineral resources. Geological Dictionary. Four, Applied geology fascicle of mineral deposits[M]. Beijing:Geological Press, 1986.
    [13] 石金明, 向军, 胡松, 孙路石, 苏胜, 徐朝芬, 许凯.洗煤过程中煤结构的变化[J].化工学报, 2010, 61(12):3220-3227. http://www.wenkuxiazai.com/doc/fb91bd10e87101f69e3195ee.html

    SHI Jin-ming, XIANG Jun, HU Song, SUN Lu-shi, SU Sheng, XU Chao-fen, XU Kai. Change of coal structure during washing process[J]. J Chem Ind Eng(China), 2010, 61(12):3220-3227. http://www.wenkuxiazai.com/doc/fb91bd10e87101f69e3195ee.html
    [14] WU L M, TONG D S, ZHAO L Z, WANG H, TONG D S, YU W H. Fourier transform infrared spectroscopy analysis for hydrothermal transformation of microcrystalline cellulose on montmorillonite[J]. Appl Clay Sci, 2014, 95(3):74-82. http://www.sciencedirect.com/science/article/pii/S0169131714000921
    [15] IBARRA J V, PALACIOS J M, DE ANDRÉS A M. Analysis of coal and char ashes and their ability for sulphur retention[J]. Fuel, 1989, 68(7):861-867. doi: 10.1016/0016-2361(89)90121-X
    [16] 闻辂.矿物红外光谱学[M].重庆:重庆大学出版社, 1989.

    WEN Lu. The infrared spectroscopy of minerals[M]. Chongqing:Chongqing University Press, 1989.
    [17] DE BENEDETTO G E, LAVIANO R, SABBATINI L, ZAMBONIN P G. Infrared spectroscopy in the mineralogical characterization of ancient pottery[J]. Journal of Cultural Heritage, 2002, 3(3):177-186. doi: 10.1016/S1296-2074(02)01178-0
    [18] 韩峰, 张衍国, 蒙爱红, 李清海.云南褐煤结构的FT-IR分析[J].煤炭学报, 2014, 39(11):2293-2299. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mtxb201411024&dbname=CJFD&dbcode=CJFQ

    HAN Feng, ZHANG Yan-guo, MENG Ai-hong, LI Qing-hai. FTIR analysis of Yunnan Lignite[J]. China Coal Soc, 2014, 39(11):2293-2299. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mtxb201411024&dbname=CJFD&dbcode=CJFQ
    [19] GHOORAH M, DLUGOGORSKI B Z, OSKIERSKI H C, KENNEDY E M. Study of thermally conditioned and weak acid-treated serpentinites for mineralisation of carbon dioxide[J]. Miner Eng, 2014, 59(5):17-30. http://www.sciencedirect.com/science/article/pii/S0892687514000429
    [20] 孙斌. 油页岩矿物质分解特性研究[D]. 吉林: 东北电力大学, 2013.

    SUN Bin, Mineral decomposition characteristic research of oil shale[D] Jilin:Northeast Elcetric Power University, 2013.
    [21] SAKANISHI K, SAITO I, ISHOM F, WATANABE I, MOCHIDA I, OKUYAMA N. Characterization and elution behaviors of organically associated minerals in coals during acid treatment and solvent extraction[J]. Fuel, 2002, 81(11/12):1471-1475. https://www.sciencedirect.com/science/article/pii/S0016236102000789
    [22] 韩秀伶, 陈开惠.高岭石-多水高岭石演化系列的红外吸收光谱研究[J].地质科学, 1982, (1):71-79.

    HAN Xiu-ling, CHEN Kai-hui. Study of infrared absorption spectra on the kaolinite-halloysite evolutionary series[J]. Chin J Geol, 1982, (1):71-79.
    [23] 秦匡宗, 劳永新.茂名和抚顺油页岩组成结构的研究Ⅰ.有机质的芳碳结构[J].燃料化学学报, 1985, 13(2):39-46. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rlhx198502004&dbname=CJFD&dbcode=CJFQ

    QIN Kuang-zong, LAO Yong-xin. Study on the structure of oil shale in Maoming and FushunⅠ. Aromatic carbon structure of organic matter[J]. J Fuel Chem Technol, 1985, 13(2):39-46. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rlhx198502004&dbname=CJFD&dbcode=CJFQ
    [24] LARSEN J W, PAN C S, SHAWVER S. Effect of demineralization on the macromolecular structure of coals[J]. Energy Fuels, 1989, 3:557-561. doi: 10.1021/ef00017a004
    [25] 柏静儒, 潘朔, 林卫生, 贾春霞, 王擎.盐酸酸洗对油页岩小分子溶出行为的影响[J].燃料化学学报, 2014, 42(12):1409-1415. doi: 10.3969/j.issn.0253-2409.2014.12.001

    BAI Jing-ru, PAN Shuo, LIN Wei-sheng, JIA Chun-xia, WANG Qing. Influence of hydrochloric acid pickling on dissolution behaviors of small molecules in oil shale[J].J Fuel Chem Technol, 2014, 42(12):1409-1415. doi: 10.3969/j.issn.0253-2409.2014.12.001
    [26] WIJAYA N, ZHANG L. A critical review of coal demineralization and its implication on understanding the speciation of organically bound metals and submicrometer mineral grains in coal[J]. Energy Fuels, 2011, 25(1):1-16. doi: 10.1021/ef1008192
    [27] GENG W, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel, 2009, 88(1):139-144. doi: 10.1016/j.fuel.2008.07.027
    [28] 魏强, 唐跃刚, 王绍清, 黄帆. 13C-NMR分析混合酸处理脱灰对永兴褐煤结构的影响[J].燃料化学学报, 2015, 43(4):410-415. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18603.shtml

    WEI Qiang, TANG Yue-gang, WANG Shao-qing, HUANG Fan. 13C-NMR study on effect of demineralization by mixed acid treatment on Yongxing lignite structure[J]. J Fuel Chem Technol, 2015, 43(4):410-415. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18603.shtml
    [29] PATTERSON J H. A review of the effects of minerals in processing of Australian oil shales[J]. Fuel, 1994, 73(3):321-327. doi: 10.1016/0016-2361(94)90082-5
    [30] IBARRA J V, MUNOZ E, MOLINER R. FTIR study of the evolution of coal structure during the coalification process[J]. Org Geochem, 1996, 24(6):725-735. http://www.sciencedirect.com/science/article/pii/0146638096000630
    [31] ZHAO Y, LIU L, QIU P H, XIE X, CHEN X Y, LIN D. Impacts of chemical fractionation on Zhundong coal's chemical structure and pyrolysis reactivity[J]. Fuel Process Technol, 2017, 155:144-152. doi: 10.1016/j.fuproc.2016.05.011
    [32] LIN R, RITZ G P. Reflectance FT-IR microspectroscopy of fossil algae contained in organic-rich shales[J]. Appl Spectrosc, 1993, 47(3):265-271. doi: 10.1366/0003702934066794
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  26
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-08
  • 修回日期:  2017-07-24
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-12-10

目录

    /

    返回文章
    返回