留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同晶外延生长法合成MFI型核壳复合分子筛

崔丽萍 王成雄 赵云昆 李忠 杨冬花

崔丽萍, 王成雄, 赵云昆, 李忠, 杨冬花. 同晶外延生长法合成MFI型核壳复合分子筛[J]. 燃料化学学报(中英文), 2016, 44(9): 1145-1152.
引用本文: 崔丽萍, 王成雄, 赵云昆, 李忠, 杨冬花. 同晶外延生长法合成MFI型核壳复合分子筛[J]. 燃料化学学报(中英文), 2016, 44(9): 1145-1152.
CUI Li-ping, WANG Cheng-xiong, ZHAO Yun-kun, LI Zhong, YANG Dong-hua. Synthesis of core-shell structured MFI-type composite zeolites by isomorphous epitaxial growth[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1145-1152.
Citation: CUI Li-ping, WANG Cheng-xiong, ZHAO Yun-kun, LI Zhong, YANG Dong-hua. Synthesis of core-shell structured MFI-type composite zeolites by isomorphous epitaxial growth[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1145-1152.

同晶外延生长法合成MFI型核壳复合分子筛

基金项目: 

山西省科技基础条件平台建设项目 2015091009

详细信息
    通讯作者:

    李忠, Tel: 0351-6018526,E-mail: lizhong@tyut.edu.cn

  • 中图分类号: TQ426

Synthesis of core-shell structured MFI-type composite zeolites by isomorphous epitaxial growth

Funds: 

the Science and Technology Infrastructure Platform Construction Program of Shanxi Province 2015091009

  • 摘要: 采用二次热液结晶法,以四丙基氢氧化铵水溶液预处理过的低硅ZSM-5分子筛为晶核,通过调控pH值、水量和晶化时间等二次结晶条件,在晶核上外延生长了高硅ZSM-5壳,制备了MFI/MFI核壳型复合分子筛。通过X射线衍射、扫描电镜、能量色散谱仪、透射电子显微镜、N2吸附-脱附和NH3-程序升温脱附等手段表征了所合成的核壳分子筛的晶体结构、表面形态及核/壳界面,并对它们的结构参数以及酸性进行了初步评估。结果表明,核壳复合分子筛的壳层由多层200 nm的MFI沸石晶粒组成;高硅ZSM-5分子筛壳层的生成,引入了介孔结构,显著增大了外比表面积;同时,核壳结构的形成降低了复合分子筛酸性和外表面的酸密度,但增加了弱酸量。当二次晶化母液pH值为8.5,H2O/SO2物质的量比为30,晶化时间为24 h时,高硅分子筛壳层更易可控生长。
  • 图  1  CZ和CSZ分子筛样品的XRD谱图

    Figure  1  XRD patterns of CZ and CSZ zeolite samples

    图  2  未预处理ZSM-5分子筛(a) 及其二次生长样品(b) 的SEM照片

    Figure  2  SEM images of (a) ZSM-5 sample, (b) ZSM-5 sample after secondary growth without pretreatment

    图  3  TPAOH预处理后CZ样品的SEM照片和EDS谱图

    Figure  3  SEM images ((a) and (c), with different magnifications) of CZ samples after TPAOH pretreatment and the corresponding EDS chemical analyses of zone 1 (b) and zone 2 (d)

    图  4  CSZ分子筛的SEM、TEM、EDS和SAED照片

    Figure  4  SEM images ((a) and (b), with different magnifications) of CSZ sample, TEM image of CSZ sample ((c) and (d)), the corresponding EDS chemical analysis of surface (inset), and SAED patterns of the shell layer (e) and the core zeolites (f)

    图  5  分子筛的N2吸附-脱附等温线和孔径分布图

    Figure  5  N2 adsorption-desorption isotherms and pore size distribution (inset) of CZ and CSZ samples

    图  6  分子筛的NH3-TPD谱图

    Figure  6  NH3-TPD profiles of the CZ and CSZ zeolites

    图  7  不同pH值条件下合成分子筛的XRD谱图

    Figure  7  XRD patterns of the zeolites prepared under different pH values

    图  8  不同水量条件下合成分子筛的XRD谱图

    Figure  8  XRD patterns of the zeolites prepared with different contents of H2O

    图  9  不同二次晶化时间下合成分子筛的XRD谱图

    Figure  9  XRD patterns of the zeolites obtained with different crystallization times

    表  1  分子筛的织构性质

    Table  1  Textural properties of the CZ and CSZ samples

    Sample ABET /(m2·g-1) Amicroa /(m2·g-1) Aextermalb /(m2·g-1) vtotalc /(cm3·g-1) vmicrod /(cm3·g-1)
    CZ 249 208 41.0 0.173 0.095 9
    CSZ 353 198 155.0 0.192 0.089 7
    a, b, d: calculated by t-plot method; c: calculated at p/p0=0.995
    下载: 导出CSV

    表  2  不同pH值条件下合成分子筛的晶胞参数

    Table  2  Unit cell parameters of the zeolites prepared under different pH values

    pH value Unit cell parameters /nm Volume
    V/nm3
    a b c
    5.1 2.016 2.017 1.349 5.486
    6.7 2.019 2.026 1.358 5.556
    8.5 2.014 2.013 1.349 5.471
    12.5 2.020 2.017 1.353 5.511
    下载: 导出CSV

    表  3  不同水量条件下合成分子筛的晶胞参数

    Table  3  Unit cell parameters of the zeolites prepared with different contents of H2O

    H2O/SO2
    (mol ratio)
    Unit cell parameters /nm Volume
    V/nm3
    a b c
    30 2.015 2.017 1.359 5.525
    80 2.020 2.026 1.353 5.536
    150 2.015 2.022 1.359 5.537
    250 2.019 2.026 1.358 5.556
    下载: 导出CSV

    表  4  不同二次晶化时间下合成分子筛的晶胞参数

    Table  4  Unit cell parameters the zeolites obtained with different crystallization times

    Time t/h Unit cell parameters /nm Volume
    V/nm3
    a b c
    12 2.016 2.017 1.354 5.550
    24 2.012 2.013 1.350 5.468
    36 2.017 2.031 1.359 5.566
    48 2.015 2.017 1.359 5.525
    下载: 导出CSV
  • [1] OKAMOTO M, OSAFUNE Y. MFI-type zeolite with a core-shell structure with minimal defects synthesized by crystal overgrowth of aluminum-free MFI-type zeolite on aluminum-containing zeolite and its catalytic performance[J]. Microporous Mesoporous Mater, 2011, 143(2/3): 413-418. https://www.researchgate.net/publication/251673974_MFI-type_zeolite_with_a_core-shell_structure_with_minimal_defects_synthesized_by_crystal_overgrowth_of_aluminum-free_MFI-type_zeolite_on_aluminum-containing_zeolite_and_its_catalytic_performance
    [2] 张佩珊, 马波, 杨卫亚, 凌凤香, 沈智奇, 王少军, 候宇鑫.核壳结构Beta/MCM-22双微孔复合分子筛的合成与表征[J].燃料化学学报, 2014, 42(10): 1240-1245. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18509.shtml

    ZHANG Pei-shan, MA Bo, YANG Wei-ya, LING Feng-xiang, SHEN Zhi-qi, WANG Shao-jun, HOU Yu-xin. Synthesis and characterization of core-shell Beta/MCM-22 micro-microporous composite zeolites[J]. J Fuel Chem Technol, 2014, 42(10): 1240-1245. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18509.shtml
    [3] LI K H, VALLA J, GARCIA-MARTINEZ J. Realizing the commercial potential of hierarchical zeolites: New opportunities in catalytic cracking[J]. ChemCatChem, 2014, 6(1): 46-66. doi: 10.1002/cctc.v6.1
    [4] GORA L, SULIKOWSKI B, SERWICKA E M. Formation of structured silicalite-1/ZSM-5 composites by a self-assembly process[J]. Appl Catal A: Gen, 2007, 325(2): 316-321. doi: 10.1016/j.apcata.2007.02.047
    [5] BOUIZI Y, ROULEAU L, VALTCHEV V P. Factors controlling the formation of core-shell zeolite-zeolite composites[J]. Chem Mater, 2006, 18: 4959-4966. doi: 10.1021/cm0611744
    [6] VU D V, MIYAMOTO M, NISHIYAMA N, ICHIKAWAB S, EGASHIRAA Y, UEYAMA K. Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites[J]. Microporous Mesoporous Mater, 2008, 115(1/2): 106-112. https://www.researchgate.net/profile/Korekazu_Ueyama/publication/248293134_Catalytic_activities_and_structures_of_silicalite-1H-ZSM-5_zeolite_composites/links/0f31753bd41068ed65000000.pdf
    [7] ZHAN Y Z, LI X X, ZHANG Y G, HAN L, CHEN Y L. Phase and morphology control of LTA/FAU zeolites by adding trace amounts ofinorganicions[J]. Ceram Int, 2013, 39(5): 5997-6003. doi: 10.1016/j.ceramint.2013.01.005
    [8] KONG D J, ZHENG J L, YUAN X H, WANG Y D, FANG D Y. Fabrication of core/shell structure via overgrowth of ZSM-5 layers on mordenite crystals[J]. Microporous Mesoporous Mater, 2009, 119(1/2/3): 91-96. https://www.researchgate.net/publication/248293302_Fabrication_of_coreshell_structure_via_overgrowth_of_ZSM-5_layers_on_mordenite_crystals
    [9] ROLLMANN L D. ZSM-5 containing aluminum-free shells on its surface: US, 4088605[P]. 1978-05-09.
    [10] 孔德金, 邹薇, 童伟益, 房鼎业. MFI/MFI核壳分子筛的合成及催化性能研究[J].化学学报, 2009, 67(15): 1765-1770.

    KONG De-jin, ZOU Wei, TONG Wei-yi, FANG Ding-ye. Synthesis and catalytic behaviors of MFI/MFI core-shell zeolite[J]. Acta Chim Sin, 2009, 67(15): 1765-1770.
    [11] LIN Y S, DUKE M C. Recent progress in polycrystalline zeolite membrane research[J]. Curr Opin Chem Eng, 2013, 2(2): 209-216. doi: 10.1016/j.coche.2013.03.002
    [12] LI Q H, WANG Z, HEDLND J, CREASER D, ZHANG H, ZOU Y D, BONS A J. Synthesis and characterization of colloidal zoned MFI crystals[J]. Microporous Mesporous Mater, 2005, 78(1): 1-10. doi: 10.1016/j.micromeso.2004.09.010
    [13] GUO Y P, WANG H J, GUO Y J, GUO L H, CHU L F, GUO C X. Fabrication and characterization of hierarchical ZSM-5 zeolites by using organosilanes as additives[J]. Chem Eng J, 2011, 166(1): 391-400. doi: 10.1016/j.cej.2010.10.057
    [14] GROEN J C, PEFFER L A A, MOULIJIN J A, PÉREZ-RAMÍREZ J. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium[J]. Colloids Surf A, 2013, 241(1/2/3): 53-58. https://www.researchgate.net/publication/229098413_Mesoporosity_development_in_ZSM-5_zeolite_upon_optimized_desilication_conditions_in_alkaline_medium
    [15] VU D V, MIYAMOTO M, NISHIYAMA N, EGASHIRA Y, UEYAMA K. Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals[J]. J Catal, 2006, 243(2): 389-394. doi: 10.1016/j.jcat.2006.07.028
    [16] GROEN J C, JANSEN J C, MOULIJIN J A, PÉREZ-RAMÍREZ J. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J]. J Phys Chem B, 2004, 108: 13062-13065. doi: 10.1021/jp047194f
    [17] DONK S V, JANSSEN A H, BITTER J H, JONG K P. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catal Rev, 2003, 45: 297-319. doi: 10.1081/CR-120023908
    [18] CHANG C D, BELL A T. Studies on the mechanism of ZSM-5 formation[J]. Catal Lett, 1991, 8(5): 305-316. https://www.researchgate.net/publication/227106848_Studies_on_the_mechanism_of_ZSM-5_formation
    [19] NAGY J B, BODART P, COLLECTTE H, FERNANDEZ C, GABELICA Z, NASTRO A, AIELLO R. Characterization of crystalline and amorphous phases during the synthesis of (TPA, M)-ZSM-5 zeolites (M=Li, Na, K)[J]. J Chem Soc, Faraday Trans, 1989, 185: 2749-2769.
    [20] DAI C Y, ZHANG A F, LI L L, HOU K K, DING F S, LI J, MU D Y, SONG C S, LIU M, GUO X W. Synthesis of hollow nanocubes and macroporous monoliths of silicalite-1 by alkaline treatment[J]. Chem Mater, 2013, 25(21): 4197-4205. doi: 10.1021/cm401739e
    [21] YAN Y, CHAUDHURI S R, SARKAR A. Synthesis of oriented zeolite molecular sieve films with controlled morphologies[J]. Chem Mater, 1996, 8: 473-479. doi: 10.1021/cm950393e
    [22] JUNG J S, PARK J W, SEO G. Catalytic cracking of n-octane over alkali-treated MFI zeolite[J]. Appl Catal A: Gen, 2005, 288(1/2): 149-157.
    [23] GROEN J C, PÉREZ-RAMÍREZ J. Critical appraisal of mesopore characterization by adsorption analysis[J]. Appl Catal A: Gen, 2004, 268(1/2): 121-125. https://www.researchgate.net/publication/223238337_Critical_Appraisal_of_Mesopore_Characterization_by_Adsorption_Analysis?_sg=AIZOSND2lq0o4WG0wHWMTpDdE-L_-RBdv3Prir-8UUtURWrKzGxCNyhtMNXkzt7Vu-9Csvlenk_CItExRbGWtQ
    [24] LV Y Y, QIAN X F, TU B, ZHAO D. Generalized synthesis of core-shell structured nano-zeolite@ordered mesoporous silica composites[J]. Catal Today, 2013, 204: 2-7. doi: 10.1016/j.cattod.2012.09.031
    [25] ARMAROLI T, SIMON L J, DIGNE M, MANTANMIA T, BEVILACQUA M, VALTCHEV V, PATARIN J, BUSCA G. Effects of crystal size and Si/Al ratio on the surface properties of H-ZSM-5 zeolites[J]. Appl Catal A: Gen, 2006, 306(1): 78-84. https://www.researchgate.net/publication/229144426_Effects_of_crystal_size_and_SiAl_ratio_on_the_surface_properties_of_H-ZSM-5_zeolites
    [26] 黄风林, 向小凤.甲醇精馏过程四塔流程模拟分析[J].石油与天然气化工, 2007, 36(1): 18-21. http://www.cnki.com.cn/Article/CJFDTOTAL-STQG200701007.htm

    HUANG Feng-lin, XIANG Xiao-feng. Simulation analysis of four-column process flow for methanol rectification[J]. Chem Eng Oil Gas, 2007, 36(1): 18-21. http://www.cnki.com.cn/Article/CJFDTOTAL-STQG200701007.htm
    [27] TRAN T M, GNEP S N, SZABO G, GUISNET M. Comparative study of the transformation of n-butane, n-hexane and n-heptane over H-MOR zeolites with various Si/Al ratios[J]. Appl Catal, 1998, 170(1): 49-58. doi: 10.1016/S0926-860X(98)00035-0
    [28] 孔德金, 邹薇, 郑均林, 房鼎业. MFI/MFI核壳分子筛合成的影响因素及结晶动力学[J].物理化学学报, 2009, 25(9): 1921-1927. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200909037.htm

    KONG De-jin, ZOU Wei, ZHENG Jun-lin, FANG Ding-ye. Crystallization kinetics and influencing factors in the syntheses of MFI/MFI core-shell zeolites[J]. Acta Phys Chim Sin, 2009, 25(9): 1921-1927. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200909037.htm
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  40
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-03
  • 修回日期:  2016-06-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-09-10

目录

    /

    返回文章
    返回