留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化铝载体硫酸化对锰铈催化剂SCR脱硝性能的影响

张强 刘璐 于梦云 周洲

张强, 刘璐, 于梦云, 周洲. 氧化铝载体硫酸化对锰铈催化剂SCR脱硝性能的影响[J]. 燃料化学学报(中英文), 2019, 47(9): 1137-1145.
引用本文: 张强, 刘璐, 于梦云, 周洲. 氧化铝载体硫酸化对锰铈催化剂SCR脱硝性能的影响[J]. 燃料化学学报(中英文), 2019, 47(9): 1137-1145.
ZHANG Qiang, LIU Lu, YU Meng-yun, ZHOU Zhou. Effect of sulfuric acid modification of Al2O3 support on the SCR performance of MnCe/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1137-1145.
Citation: ZHANG Qiang, LIU Lu, YU Meng-yun, ZHOU Zhou. Effect of sulfuric acid modification of Al2O3 support on the SCR performance of MnCe/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1137-1145.

氧化铝载体硫酸化对锰铈催化剂SCR脱硝性能的影响

基金项目: 

国家自然科学基金 21406270

详细信息
  • 中图分类号: X511

Effect of sulfuric acid modification of Al2O3 support on the SCR performance of MnCe/Al2O3 catalysts

Funds: 

the National Natural Science Foundation of China 21406270

More Information
  • 摘要: 分别以硫酸改性前后的氧化铝为载体,采用浸渍法制备了锰铈催化剂,对其NH3-SCR脱硝性能进行评价,并采用XRD、BET、NH3-TPD、H2-TPR以及FT-IR对催化剂进行了表征。结果表明,改性降低了金属的分散性和氧化性,增加了酸量,特别是B酸量;催化剂的最佳脱硝温度窗口向高温扩展,活性温度窗口范围变宽,并且,改性液浓度越大变化幅度越大。当反应温度在200-250 ℃时,未改性催化剂与采用0.2 mol/L硫酸改性的催化剂具有接近的催化活性,但改性后的催化剂具有更高的抗水抗硫活性,250 ℃时脱硝率可达70%。
  • 图  1  改性前后催化剂的脱硝活性

    Figure  1  SCR activity of the unmodified and modified catalysts

    图  2  M/Al2O3和M/0.2S/Al2O3催化剂在250 ℃时的抗水抗硫性能

    Figure  2  H2O and SO2 durability of M/Al2O3 and M/0.2S/Al2O3 for NH3-SCR of NO at 250 ℃

    图  3  改性前后催化剂的XRD谱图

    Figure  3  XRD patterns of the unmodified and modified catalysts

    图  4  改性前后催化剂的NH3-TPD谱图

    Figure  4  NH3-TPD profiles of the unmodified and modified catalysts

    图  5  改性前后催化剂的Py-FTIR谱图

    Figure  5  Py-FTIR spectra of the unmodified and modified catalysts

    图  6  改性前后催化剂的H2-TPR谱图

    Figure  6  H2-TPR profiles of the unmodified and modified catalysts

    图  7  150 ℃反应条件下M/Al2O3((a), (b))和M/0.5S/Al((c), (d))的红外光谱谱图

    Figure  7  In situ FT-IR spectra of M/Al2O3((a), (b)) and M/0.5S/Al((c), (d)) under different conditions at 150 ℃

    ((a), (c))pre-adsorbed with NH3 and then exposed to NO+O2 for various times ((b), (d))pre-adsorbed with NO+O2 and then exposed to NH3 for various times

    图  8  300 ℃反应条件下M/Al2O3((a), (b))和M/0.5S/Al((c), (d))的红外光谱谱图

    Figure  8  In situ FT-IR spectra of M/Al2O3((a), (b)) and M/0.5S/Al((c), (d)) under different conditions at 300 ℃

    ((a), (c))pre-adsorbed with NH3 and then exposed to NO+O2 for various times ((b), (d))pre-adsorbed with NO+O2 and then exposed to NH3 for various times

    表  1  改性前后催化剂的物理化学性质

    Table  1  Physico-chemical properties of the unmodified and modified catalysts

    Catalyst Specific surface area A/(m2·g-1) Average pore diameter d/nm Pore volume v/(cm3·g-1)
    Al2O3
    0.2S/Al
    0.5S/Al
    1.0S/Al
    M/Al2O3
    M/0.2S/Al
    M/0.5S/Al
    M/1.0S/Al
    177.3
    168.1
    164.3
    165.2
    143.2
    132.1
    139.1
    136.3
    3.61
    3.58
    3.59
    3.61
    3.62
    4.29
    3.63
    3.93
    0.24
    0.25
    0.25
    0.25
    0.21
    0.21
    0.22
    0.21
    下载: 导出CSV
  • [1] 纪生晓, 张玮坚, 郑玉婴, 朱建风.低温燃烧法制备Mn-CeOx催化剂及其NH3-SCR脱硝性能[J].燃料化学学报, 2019, 47(2):224-235. doi: 10.3969/j.issn.0253-2409.2019.02.012

    JI Sheng-xiao, ZHANG Wei-jian, ZHENG Yu-ying, ZHU Jian-feng. Low-temperature combustion synthesis of the Mn-CeOx catalyst and its performance in the selective catalytic reduction of NOx by NH3[J]. J Fuel Chem Technol, 2019, 47(2):224-235. doi: 10.3969/j.issn.0253-2409.2019.02.012
    [2] KANG M, PARK J H, CHOI J S, PARK E D, YIE J E. Low-temperature catalytic reduction of nitrogen oxides with ammonia over supported manganese oxide catalysts[J]. Korean J Chem Eng, 2007, 24(1):191-195. doi: 10.1007/s11814-007-5031-2
    [3] MOUSAVIA S M, PANAHI P N. Modeling and optimization of NH3-SCR performance of MnOx/γ-alumina nanocatalysts by response surface methodology[J]. J Taiwan Inst Chem E, 2016, 69:68-77. doi: 10.1016/j.jtice.2016.09.033
    [4] 郭静, 李彩亭, 路培, 崔华飞, 彭敦亮, 文青波. CeO2改性MnOx/Al2O3的低温SCR法脱硝性能及机制研究[J].环境科学, 2011, (8):2240-2246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201108013

    GUO Jing, LI Cai-ting, LU Pei, CUI Hua-fei, PENG Dun-liang, WEN Qing-bo. Research on SCR denitrification of MnOx/Al2O3 modified by CeO2 and its mechanism at low temperature[J]. Environ sci, 2011, (8):2240-2246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201108013
    [5] JIN R B, LIU Y, WU Z B, WANG H Q, GU T T. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3:A comparative study[J]. Chemosphere, 2010, 78(9):1160-1166. doi: 10.1016/j.chemosphere.2009.11.049
    [6] KANG M, PARK E D, KIM J M, YIE J E. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catal Today, 2006, 111(3/4):236-241. doi: 10.1016-j.cattod.2005.10.032/
    [7] QI G, YANG R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. App Catal B:Environ, 2003, 44(3):217-225. doi: 10.1016/S0926-3373(03)00100-0
    [8] NOTOYA F, SU C, SASAOKA E, NOJIMA S. Effect of SO2 on the low-temperature selective catalytic reduction of nitric oxide with ammonia over TiO2, ZrO2, and Al2O3[J]. Ind Eng Chem Res, 2001, 40(17):3732-3739. doi: 10.1021/ie000972f
    [9] XIE G, LIU Z, ZHU Z, LIU Q, GE J, HUANG Z. Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent Ⅱ. Promotion of SCR activity by SO2 at high temperatures[J]. J Catal, 2004, 224(1):42-49.
    [10] YAO X J, WANG Z, YU S H, YANG F, DONG L. Acid pretreatment effect on the physicochemical property and catalytic performance of CeO2 for NH3-SCR[J]. Appl Catal A:Gen, 2017, 542:282-288. doi: 10.1016/j.apcata.2017.06.003
    [11] ZHANG L, ZOU W X, MA K L, CAO Y, XIONG Y, WU S G, TANG C J, GAO F, DONG L. Sulfated temperature effects on the catalytic activity of CeO2 in NH3-selective catalytic reduction conditions[J]. J Phys Chem C, 2015, 119(2):1155-1163. doi: 10.1021/jp511282c
    [12] 李晶. Mn基低温脱硝催化剂的研究[D].北京: 石油化工学院, 2015.

    LI Jing. Research on low-temperature Mn-based deNOx catalyst[D]. Beijing: Institute of Petrochemical Technology, 2015.
    [13] ZHAO W W, LI C T, LU P, WEN Q B, ZHAO Y P, ZHANG X, FAN C Z, TAO S S. Iron, lanthanumand manganese oxides loaded onγ-Al2O3 for selective catalytic reduction of NO with NH3 at low temperature[J]. Environ Technol, 2012, 34(1/4):81-90. https://www.ncbi.nlm.nih.gov/pubmed/23530318
    [14] 黄增斌, 李翠清, 王振, 徐胜美, 冯凌波, 王虹, 宋永吉, 张伟.不同分子筛负载锰铈催化剂的低温NH3-SCR脱硝性能[J].燃料化学学报, 2016, 44(11):1388-1394. doi: 10.3969/j.issn.0253-2409.2016.11.016

    HUANG Zeng-bin, LI Cui-qing, WANG Zhen, XU Sheng-mei, FENG Ling-bo, WANG Hong, SONG Yong-ji, ZHANG Wei. Performance of Mn-Ce catalysts supported on different zeolites in the NH3-SCR of NOx[J]. J Fuel Chem Technol, 2016, 44(11):1388-1394. doi: 10.3969/j.issn.0253-2409.2016.11.016
    [15] ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, BOOLCHAND P, SMIRNIOTIS P G. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Appl Catal B:Environ, 2007, 76(1):123-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35cb995e5856d8b4b81e52a4390273ea
    [16] 安忠义, 禚玉群, 陈昌和.煅烧温度对Mn/TiO2催化剂催化NO氧化活性的影响[J].燃料化学学报, 2014, 42(3):370-377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201403018

    AN Zhong-yi, ZHUO Yu-qun, CHEN Chang-he. Influence of calcination temperature on the catalytic activity of Mn/TiO2 for NO oxidation[J]. J Fuel Chem Technol, 2014, 42(3):370-377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201403018
    [17] 张治安, 杨邦朝, 邓梅根, 胡永达, 汪斌华.超级电容器纳米氧化锰电极材料的合成与表征[J].化学学报, 2004, 62(17):1617-1620. doi: 10.3321/j.issn:0567-7351.2004.17.008

    ZHANG Zhi-an, YANG Bang-chao, DENG Mei-gen, HU Yong-da, WANG Bin-hua. Synthesis and characterization of nanostructured MnO2 for supercapacitor[J]. Acta Chim Sin(Chin Ed), 2004, 62(17):1617-1620. doi: 10.3321/j.issn:0567-7351.2004.17.008
    [18] DU C H, QIN Y N, HE Y F, SHI X M, MA Z. Preparation and characterization of novel solid acid of sulfated anodized aluminium[J]. J Mol Catal, 2003, 17(3):183-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzch200303005
    [19] HOSSEINPOUR N, MORTAZAVI Y, BAZYARI A, KHODADADI A A. Synergetic effects of Y-zeolite and amorphous silica-alumina as main FCC catalyst components on triisopropylbenzene cracking and coke formation[J]. Fuel Process Technol, 2009, 90(2):171-179. doi: 10.1016/j.fuproc.2008.08.013
    [20] 王斌, 张强, 韩东敏, 李春义, 杨朝合, 山红红.催化剂基质Lewis及Bronsted酸性位强度对催化裂化小分子烯烃收率的影响[J].石油学报(石油加工), 2016, 32(4):666-673. doi: 10.3969/j.issn.1001-8719.2016.04.002

    WANG Bin, ZHANG Qiang, HAN Dong-min, LI Chun-yi, YANG Chao-he, SHAN Hong-hong. Effects of acid strength of matrix in catalyst on the yield of small olefins during the catalytic cracking process[J]. Acta Pet Sin(Pet Process Sect), 2016, 32(4):666-673. doi: 10.3969/j.issn.1001-8719.2016.04.002
    [21] MORALES A, AGUDELO M M R D, HERNÁNDEZ F. Adsorption mechanism of phosphorus on alumina[J]. Appl Catal, 1988, 41(41):261-271. doi: 10.1016-S0166-9834(00)80397-8/
    [22] ZHANG H, ZOU Y, PENG Y. Influence of sulfation on CeO2-ZrO2 catalysts for NO reduction with NH3[J]. Chin J Catal, 2017, 38(1):160-167. doi: 10.1016/S1872-2067(16)62581-0
    [23] 万义玲, 张传辉, 郭杨龙, 郭耘, 卢冠忠. CeO2-MnOx催化剂上氯乙烯有机废气的催化燃烧[J].催化学报, 2012, 33(3):557-562. http://www.cnki.com.cn/Article/CJFDTotal-CHUA201203026.htm

    WAN Yi-ling, ZHANG Chuan-hui, GUO Yang-long, GUO Yun, LU Guan-zhong. Catalytic combustion of vinyl chloride emission over CeO2-MnOx catalyst[J]. Chin J Catal, 2012, 33(3):557-562. http://www.cnki.com.cn/Article/CJFDTotal-CHUA201203026.htm
    [24] 樊银明. Ce原位引入和负载于Mn/SAPO-34的低温NH3-SCR抗硫抗水性能与分子模拟研究[D].广州: 华南理工大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10561-1018809426.htm

    FAN Yin-ming. Experimental and molecular simulation study on cerium presence in the framework and the surface of Mn/SAPO-34 resistance to SO2 and H2O in NH3-SCR at low temperature[D]. Guangzhou: South China University of Technology, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10561-1018809426.htm
    [25] JIANG B Q, WU Z B, LIU Y, LEE S C, HO W K. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2[J]. J Phys Chem C, 2010, 114(11):4961-4965. doi: 10.1021/jp907783g
    [26] 孙路石, 赵清森, 向军, 石金明, 王乐乐, 胡松, 苏胜.原位漫反射红外光谱研究NO和NH3在CuO/Al2O3催化剂上的吸附行为[J].化工学报, 2009, 60(2):444-450.) doi: 10.3321/j.issn:0438-1157.2009.02.027

    SUN Lu-shi, ZHAO Qing-sen, XIANG Jun, SHI Jin-ming, WANG Le-le, HU Song, SU Sheng. Adsorption of NO and NH3 over CuO/γ-Al2O3 catalyst by DRIFTS[J]. CIESC J, 2009, 60(2):444-450. doi: 10.3321/j.issn:0438-1157.2009.02.027
    [27] 谢天.铝基锰系催化剂脱硫脱硝性能研究[D].武汉: 华中科技大学, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D187366

    XIE Tian. A thesis submitted in partial fulfillment of the requirements for the degree of master in engineering[D]. Wuhan: Huazhong University of Science and Technology, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D187366
    [28] QI G, YANG R T. Characterization and FT-IR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. J Phys Chem B, 2004, 108(40):15738-15747. doi: 10.1021/jp048431h
    [29] KIJLSTRA W S, BRANDS D S, SMIT H I, POELS E K, BLIEK A. Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3 Ⅱ. Reactivity of adsorbed NH3 and NO complexes[J]. J Catal, 1997, 171(1):219-230.
    [30] TOPSOE N Y, TOPSOE H, DUMESIC J A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia:Ⅰ. Combined temperature-programmed in-situ FT-IR and on-line Mass-Spectroscopy studies[J]. J Catal, 1995, 151(1):226-240. doi: 10.1006/jcat.1995.1024
    [31] TOPSØE N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by In situ on-line fourier transform infrared spectroscopy[J]. Science, 1994, 265(5176):1217-1219. doi: 10.1126/science.265.5176.1217
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  57
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-04
  • 修回日期:  2019-07-15
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回