留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同等级煤与油共炼的转化率差异及残渣分析

李传 秦勇 杨腾飞 孟环爽 杨彬 邓文安

李传, 秦勇, 杨腾飞, 孟环爽, 杨彬, 邓文安. 不同等级煤与油共炼的转化率差异及残渣分析[J]. 燃料化学学报(中英文), 2017, 45(4): 436-441.
引用本文: 李传, 秦勇, 杨腾飞, 孟环爽, 杨彬, 邓文安. 不同等级煤与油共炼的转化率差异及残渣分析[J]. 燃料化学学报(中英文), 2017, 45(4): 436-441.
LI Chuan, QIN Yong, YANG Teng-fei, MENG Huan-shuang, YANG Bin, DENG Wen-an. Analysis of solid residues from the co-processing of different rank coals and oils[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 436-441.
Citation: LI Chuan, QIN Yong, YANG Teng-fei, MENG Huan-shuang, YANG Bin, DENG Wen-an. Analysis of solid residues from the co-processing of different rank coals and oils[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 436-441.

不同等级煤与油共炼的转化率差异及残渣分析

基金项目: 

国家自然科学青年基金 21106186

山东省重点研发计划 2015GGX107014

详细信息
    通讯作者:

    杨腾飞, Tel:15650155856, E-mail:yangmo575@163.com

  • 中图分类号: TQ529.1

Analysis of solid residues from the co-processing of different rank coals and oils

Funds: 

the National Natural Science Youth Foundation of China 21106186

Key Research and Developement Plan of Shandong Province 2015GGX107014

  • 摘要: 选取安徽褐煤、辽宁褐煤和贵州烟煤三种煤为原料,以油溶性环烷酸钼为催化剂,分别与马瑞常渣(MRAR)、克炼常渣(KAR)以及催化裂化油浆(FCCS)在高压釜内模拟悬浮床加氢共炼反应。结果表明,不同的油体系下,两种褐煤都能达到83%以上的转化率,而对于贵州烟煤,转化率最高的FCCS体系与最低的KAR体系分别为67.75%和50.31%,相差很大。采用FT-IR和SEM分析反应后固体残渣,计算了固体残渣中脂肪族和芳香族中各个基团的相对含量,并对比了不同体系反应后固体残渣的微观形貌。结果表明,KAR体系的固体残渣脂肪链较长,支链化程度高,取代度较低。转化率较高的褐煤反应后固体残渣结构松散,分散度高;转化率较低的烟煤固体残渣随着转化率降低,残渣颗粒逐渐变大,表面更加光滑,板结程度加深。
  • 图  1  反应后煤转化率及气体、液体、固体收率

    Figure  1  Coal conversion and gas liquid solid yields after co-processing

    图  2  反应后固体残渣的红外拟合谱图

    Figure  2  FT-IR spectra of solid residues with curve fitting ---: original peak; —: calculated profile; .....: fitting peak

    图  3  反应后固体残渣的SEM照片

    Figure  3  SEM images of various solid residues

    (a): MRAR-AH; (b): KAR-AH; (c): FCCS-AH; (d): MRAR-LN; (e): KAR-LN; (f): FCCS-LN; (g): MRAR-GZ; (h): KAR-GZ; (i): FCCS-GZ

    表  1  原料煤的工业分析和元素分析

    Table  1  Proximate analysis and ultimate analysis of coals

    Coal type Proximate analysis w/% Ultimate analysis wdaf/%
    Mad Aad Vdaf FCdaf C H N S
    Anhui lignite 0.75 3.97 56.24 43.76 58.70 5.15 0.51 0.35
    Liaoning lignite 0.76 18.06 49.02 50.98 55.31 4.78 1.29 0.59
    Guizhou bitumite 0.13 9.29 34.07 65.93 71.60 4.65 0.95 0.41
    下载: 导出CSV

    表  2  原料油的性质分析

    Table  2  Properties of oils

    Oil type Density (20 ℃) ρ/(g·mL-1) Viscosity (50 ℃) μ/(mm2·s-1) Carbon residue w/% Chemical composition w/% Ultimate analysis w/%
    saturates aromatics resins C7-asphaltenes C H S N
    MRAR 0.997 6 2 272.4 15.33 31.49 39.44 12.06 9.29 84.82 10.87 2.89 0.63
    KAR 0.967 0 1 964.1 10.01 25.44 39.20 35.10 0.26 86.68 11.66 0.63 0.77
    FCCS 1.093 6 12.41 5.84 12.69 84.28 2.11 0.09 88.38 7.34 3.96 0.25
    下载: 导出CSV

    表  3  反应后固体残渣不同基团的相对含量

    Table  3  Relative contents of different groups in the solid residues

    System CH3 CH2 CH Relative contents /% CH2/CH3
    5 adjacent H deformation 4 adjacent H deformation 2 or 3 adjacent H deformation
    MRAR-AH 33.81 41.76 24.43 13.83 17.02 69.15 1.24
    KAR-AH 23.85 50.18 25.97 15.34 13.07 71.59 2.10
    FCCS-AH 29.76 47.06 23.18 29.89 12.64 57.47 1.58
    MRAR-LN 27.00 42.00 31.00 15.37 19.26 65.37 1.56
    KAR-LN 25.77 51.53 22.70 13.25 14.31 72.44 2.00
    FCCS-LN 28.93 51.51 19.56 19.86 15.44 64.70 1.78
    下载: 导出CSV

    表  4  贵州煤反应后固体残渣不同基团的相对含量

    Table  4  Relative contents of different groups in GZ solid residues

    System CH3 CH2 CH Relative contents /% CH2/CH3
    5 adjacent H deformation 4 adjacent H deformation 2 or 3 adjacent H deformation
    MRAR-GZ 20.27 39.86 39.86 52.86 15.00 62.14 1.97
    KAR-GZ 23.79 50.80 25.40 47.97 14.86 66.89 2.14
    FCCS-GZ 26.76 48.59 24.65 54.74 11.58 56.84 1.82
    下载: 导出CSV
  • [1] 郝玉良, 杨建丽, 李允梅, 刘沐鑫, 杨勇.低阶煤温和液化特征分析[J].燃料化学学报, 2012, 40(10):1153-1160. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18037.shtml

    HAO Yu-liang, YANG Jian-li, LI Yun-mei, LIU Mu-xin, YANG Yong. Study on mild liquefaction of lower rank coal[J]. J Fuel Chem Technol, 2012, 40(10):1153-1160. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18037.shtml
    [2] 商思玉, 凌开成, 王建平, 盛清涛, 申峻.神府煤与胜利减压渣油共处理反应特性的研究[J].燃料化学学报, 2005, 33(1):47-52. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16507.shtml

    SHANG Si-yu, LING Kai-cheng, WANG Jian-ping, SHENG Qing-tao, SHEN Jun. Reaction characteristics of coprocessing of Shenfu coal and Shengli vacuum resid[J]. J Fuel Chem Technol, 2005, 33(1):47-52. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16507.shtml
    [3] 凌开成, 申峻, 邹纲明, 王志忠.杨村烟煤与石油渣油共处理反应特性的研究[J].燃料化学学报, 1997, 25(2):44-48. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX702.008.htm

    LING Kai-cheng, SHEN Jun, ZOU Gang-ming, WANG Zhi-zhong. Study on reaction property of coprocessing of Yangcun bituminous coal with petroleum residue[J]. J Fuel Chem Technol, 1997, 25(2):44-48. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX702.008.htm
    [4] 薛永兵, 凌开成, 邹纲明.钼酸胺催化剂对煤-油共处理反应性的影响[J].燃料化学学报, 2003, 31(3):225-229. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16798.shtml

    XUE Yong-bing, LING Kai-cheng, ZOU Gang-ming. Effect of ammonium molybdate catalyst on co-processing bituminous coal and residue[J]. J Fuel Chem Technol, 2003, 31(3):225-229. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16798.shtml
    [5] MOLINER R, SUELVES I, LA ZARO M J. Synergetic effects in the copyrolysis of coal petroleum residue mixtures by pyrolysis gas chromatography influence of temperature, pressure, and coal nature[J]. Energy Fuels, 1998, 12(5):963-967. doi: 10.1021/ef980033o
    [6] 黄传峰, 李大鹏, 杨涛.煤油共炼技术现状及研究趋势讨论[J].现代化工, 2016, 36(8):8-13. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201608004.htm

    HUANG Chuan-feng, LI Da-peng, YANG Tao. Status and research trends of co-processing of coal and oil[J]. Mod Chem Ind, 2016, 36(8):8-13. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201608004.htm
    [7] 王国龙, 徐蓉, 张德祥, 鲁锡兰.煤液化残渣加氢性能[J].石油学报 (石油加工), 2009, 25(5):747-751. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG200905025.htm

    WANG Guo-long, XU Rong, ZHANG De-xiang, LU Xi-lan. The hydrogenation of coal liquefaction residue[J]. Acta Pet Sin (Pet Process Sect), 2009, 25(5):747-751. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG200905025.htm
    [8] 楚希杰, 李文, 白宗庆, 李保庆.神华煤直接液化残渣热解特性研究[J].燃料化学学报, 2009, 37(4):393-397. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17462.shtml

    CHU Xi-jie, LI Wen, BAI Zong-qing, LI Bao-qing. Pyrolysis characteristics of Shenhua direct liquefaction residue[J]. J Fuel Chem Technol, 2009, 37(4):393-397. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17462.shtml
    [9] 李军, 杨建丽, 刘振宇.煤直接液化残渣的热解特性研究[J].燃料化学学报, 2010, 38(4):385-390. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17595.shtml

    LI Jun, YANG Jian-li, LIU Zhen-yu. Pyrolysis behavior of direct coal liquefaction residues[J]. J Fuel Chem Technol, 2010, 38(4):385-390. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17595.shtml
    [10] 王光耀, 张晓静, 陈贵锋, 毛学锋, 颜丙峰.高温煤焦油用作煤油共处理溶剂反应性能研究[J].煤炭转化, 2015, 38(2):49-52. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH201502013.htm

    WANG Guang-yao, ZHANG Xiao-jing, CHEN Gui-feng, MAO Xue-feng, YAN Bing-feng. Study on reaction activity of high temperature coal tar using as coal-oil co-processing solvent[J]. Coal Convers, 2015, 38(2):49-52. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH201502013.htm
    [11] SHARMA B K, SHARMA C D, TYAGI O S, BHAGAT S D, ERHAN S Z. Structural characterization of asphaltenes and ethyl acetate insoluble fractions of petroleum vacuum residues[J]. Pet Sci Technol, 2007, 25(1/2):121-139. doi: 10.1080/10916460601054263
    [12] 李冬, 刘鑫, 孙智慧, 李稳宏, 马伟.煤焦油中甲苯不溶物的性质和组成分析[J].石油学报 (石油加工), 2014, 30(1):76-82. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201401015.htm

    LI Dong, LIU Xin, SUN Zhi-hui, LI Wen-hong, MA-Wei. Property and composition analysis of toluene insoluble materials in coal tar[J]. Acta Pet Sin (Pet Process Sect), 2014, 30(1):76-82. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201401015.htm
    [13] YEN T F, WU W H, CHILINGAR G V. A study of the structure of petroleum asphaltenes and related substances by infrared spectroscopy[J]. Energy Source, 1984, 7(3):203-235. doi: 10.1080/00908318408908084
    [14] PAINTER P, STARSINIC M, COLEMAN M. Determination of Functional Groups in Coal by Fourier Transform Interferometry[C]//Fourier Transform Infrared Spectra, 1985:169-241.
    [15] IBARRA J V, MUNOZ E, MOLINER R. FTIR study of the evolution of coal structure during the coalification process[J]. Org Geochem, 1996, 24(6):725-735. https://www.researchgate.net/publication/222789181_FTIR_Study_of_the_Evolution_of_Coal_Structure_during_the_Coalification_Process
    [16] LI K, KHANNA R, ZHANG J, BARATI M, LIU Z, XU T, YANG T, SAHAJWALLA V. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques[J]. Energy Fuels, 2015, 29(11):7178-7189. doi: 10.1021/acs.energyfuels.5b02064
    [17] ZHANG Y, KANG X, TAN J. Influence of calcination and acidification on structural characterization of Anyang anthracites[J]. Energy Fuels, 2013, 27(11):7191-7197. doi: 10.1021/ef401658p
    [18] 李刚, 凌开成.煤直接液化过程动力学阶段的划分与煤的高温快速液化[J].煤炭学报, 2007, 32(9):975-979. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200709017.htm

    LI Gang, LING Kai-cheng. Division of kinetic stages in coal direct liquefaction process and coal quick liquefaction at high temperature[J]. J China Coal Soc, 2007, 32(9):975-979. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200709017.htm
    [19] 吴乐乐, 李金璐, 邓文安, 张英红, 李传.煤焦油重组分甲苯不溶物结构组成及对悬浮床加氢裂化生焦的影响[J].燃料化学学报, 2015, 43(8):923-931. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18672.shtml

    WU Le-le, LI Jin-lu, DENG Wen-an, ZHANG Ying-hong, LI Chuan. Structure of toluene insoluble coal tar heavy fraction and its relevance to the coking be havior in slurry-bed hydrocracking[J]. J Fuel Chem Technol, 2015, 43(8):923-931. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18672.shtml
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  113
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-06
  • 修回日期:  2017-02-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-04-10

目录

    /

    返回文章
    返回