留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

300MW等级燃煤机组煤粉炉与循环流化床锅炉汞排放特性比较

魏绍青 滕阳 李晓航 苏银皎 杨玮 张锴

魏绍青, 滕阳, 李晓航, 苏银皎, 杨玮, 张锴. 300MW等级燃煤机组煤粉炉与循环流化床锅炉汞排放特性比较[J]. 燃料化学学报(中英文), 2017, 45(8): 1009-1016.
引用本文: 魏绍青, 滕阳, 李晓航, 苏银皎, 杨玮, 张锴. 300MW等级燃煤机组煤粉炉与循环流化床锅炉汞排放特性比较[J]. 燃料化学学报(中英文), 2017, 45(8): 1009-1016.
WEI Shao-qing, TENG Yang, LI Xiao-hang, SU Yin-jiao, YANG Wei, ZHANG Kai. Comparison of mercury emission from around 300 MW coal-fired power generation units between pulverized boiler and circulating fluidized-bed boiler[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 1009-1016.
Citation: WEI Shao-qing, TENG Yang, LI Xiao-hang, SU Yin-jiao, YANG Wei, ZHANG Kai. Comparison of mercury emission from around 300 MW coal-fired power generation units between pulverized boiler and circulating fluidized-bed boiler[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 1009-1016.

300MW等级燃煤机组煤粉炉与循环流化床锅炉汞排放特性比较

基金项目: 

国家自然科学基金联合基金项目 U1610254

2015年度山西省科技重大专项 MD2015-01

中央高校基本科研业务费 2017MS020

详细信息
    通讯作者:

    张锴, E-mail:kzhang@ncepu.edu.cn

  • 中图分类号: X511

Comparison of mercury emission from around 300 MW coal-fired power generation units between pulverized boiler and circulating fluidized-bed boiler

Funds: 

the National Natural Science Foundation of China U1610254

the Major Special Project of Shanxi Province MD2015-01

the Fundamental Research Funds for the Central Universities 2017MS020

  • 摘要: 选取某地330 MW煤粉炉(PC炉)和350 MW循环流化床锅炉(CFB)的燃煤电厂进行汞排放特性的研究。采用30B法和安大略法对两个燃煤电厂的除尘器入口、除尘器出口、脱硫塔出口和湿式电除尘器出口的烟气进行了取样和汞浓度分析,采集了入炉煤和副产物底渣、飞灰及脱硫石膏样品。通过样品中汞含量的分布,探讨了PC炉与CFB锅炉机组现有污染物控制设备对汞的协同脱除作用。结果表明,350 MW CFB电厂除尘器出口烟气平均汞浓度降低至0.43 μg/m3,布袋除尘器对汞的捕获效率达到98.9%,相应的燃烧副产物中飞灰是汞的主要富集对象。对于330 MW PC炉电厂,除尘器入口和除尘器出口烟气汞浓度均高于350 MW CFB电厂,烟气汞浓度从除尘器入口、除尘器出口到脱硫塔出口依次降低,在脱硫塔出口烟气汞浓度降低至0.42 μg/m3,静电除尘器和湿式脱硫塔对烟气汞的捕获效率分别为75.0%和22.4%,相应的产物中飞灰和脱硫石膏中汞都有一定程度的富集。
  • 图  1  350 MW的CFB锅炉机组和取样位置示意图

    Figure  1  Schematic diagram of 350 MW CFB boiler unit and sampling positions

    图  2  330 MW的PC锅炉机组和取样位置示意图

    Figure  2  Schematic diagram of 330 MW PC boiler unit and sampling positions

    图  3  两电厂各烟气取样位置气相汞浓度

    Figure  3  Comparison of gas phase mercury concentration at each sampling point for two power plants

    图  4  两电厂固相燃烧副产物中汞的分布

    Figure  4  Comparison of mercury distribution in solid byproducts for two power plants

    图  5  两电厂污染物控制设备对汞的脱除效率

    Figure  5  Comparison of mercury removal efficiency of pollutant control equipments in two power plants

    表  1  入炉煤的工业分析和平均汞含量

    Table  1  Proximate analysis and average mercury content of feed coal samples

    表  2  除尘器入口30B法测试得到的烟气汞浓度

    Table  2  Mercury concentration in inlet flue gas of dust collector detected by 30B method

    表  3  除尘器入口OHM法测试得到的烟气汞浓度

    Table  3  Mercury concentration in inlet flue gas of dust collector detected by OHM method

    表  4  除尘器出口30B法测试得到的烟气汞浓度

    Table  4  Mercury concentration in outlet flue gas of dust collector detected by 30B method

    表  5  湿式脱硫塔出口30B法测试得到的烟气汞浓度

    Table  5  Mercury concentration in outlet flue gas of wet desulfurization tower detected by 30B method

    表  6  湿式电除尘器出口30B法测试得到的烟气汞浓度

    Table  6  Mercury concentration in outlet flue gas of wet ESP detected by 30B method

    表  7  两电厂各固相废弃物中的汞含量

    Table  7  Mercury content in solid wastes for two power plants

    表  8  330 MW PC电厂五级ESP飞灰的汞含量

    Table  8  Mercury content in fly ash from ESP for a 330 MW PC power plant

  • [1] 杨爱勇, 严智操, 惠润堂, 申智勇, 庄柯.中国煤中汞的含量、分布与赋存状态研究[J].科学技术与工程, 2015, 15(32): 93-100. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201532017.htm

    YANG Ai-yong, YAN Zhicao, HUI Runtang, SHEN Zhiyong, ZHUANG Ke. The abundance, distribution, and modes of occurrence of Hg in Chinese coals[J]. Sci Technol Eng, 2105, 15(32): 93-100. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201532017.htm
    [2] 国家环境保护部. GB13223—2011火电厂大气污染物排放标准[S]. 北京: 中国标准出版社, 2011.

    Ministry of Environmental Protection. GB13223—2011 Pollutant emission standard in thermal power plant[S]. Beijing: Standards Press of China, 2011.
    [3] WU S, YANG W, ZHOU J, WANG H, XIE Z. Effects of properties of activated carbon on its activity for mercury removal and mercury desorption from used activated carbons[J]. Energy Fuels, 2015, 29(3): 1946-1950. doi: 10.1021/ef502868s
    [4] WANG S, ZHANG Y, GU Y, WANG J, LIU Z, ZHANG Y, CAO Y, ROMERO C E, PAN W. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China[J]. Fuel, 2016, 181: 1230-1237. doi: 10.1016/j.fuel.2016.02.043
    洪亚光, 段钰锋, 朱纯, 周强, 佘敏, 杜鸿飞.载硫椰壳活性炭喷射脱汞实验研究[J].工程热物理学报, 2015, 36(5): 1135-1138.

    HONG Ya-guang, DUAN Yu-feng, ZHU Chun, SHE Min, DU Hong-fei. Experimental study on mercury adsorption of S-impregnated coconut shell activated carbon by duct injection[J]. J Eng Thermophys, 2015, 36(5): 1135-1138.
    [6] ZHANG L, WANG S, MENG Y, HAO J. Influence of Mercury and Chlorine Content of Coal on Mercury Emissions from Coal-Fired Power Plants in China[J]. Environ Sci Technol, 2012, 46(11): 6385-6392. doi: 10.1021/es300286n
    [7] 许月阳, 薛建明, 王宏亮, 李兵, 管一明, 刘珺.燃煤烟气常规污染物净化设施协同控汞的研究[J].中国电机工程学报, 2014, 34(23): 3924-3931. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201423013.htm

    XU Yue-yang, XUE Jian-ming, WANG Hong-liang, LI Bing, GUAN Yi-ming, LIU Jun. Research on mercury collaborative control by conventional pollutants purification facilities of coal-fired power plants[J]. Proc Chin Soc Electrical Eng, 2014, 34(23): 3924-3931. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201423013.htm
    [8] 程乐鸣, 周星龙, 郑成航, 王勤辉, 方梦祥, 施正伦, 骆仲泱, 岑可法.大型循环流化床锅炉的发展[J].动力工程, 2008, 28(6): 817-826. http://cdmd.cnki.com.cn/Article/CDMD-10079-2008073542.htm

    CHENG Le-ming, ZHOU Xing-long, ZHENG Cheng-hang, WANG Qin-hui, FANG Meng-xiang, SHI Zheng-lun, LUO Zhong-yang, CEN Ke-fa. Development of large-scale circulating fluidized bed boiler[J]. J Power Eng, 2008, 28(6): 817-826. http://cdmd.cnki.com.cn/Article/CDMD-10079-2008073542.htm
    [9] HU Y, CHENG H. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations[J]. Environ Pollut, 2016, 218: 1209-1221. doi: 10.1016/j.envpol.2016.08.077
    [10] CHEN B, LI J S, CHEN G Q, WEI W D, YANG Q, YAO M T, SHAO J A, ZHOU M, XIA X H, DONG K Q, XIA H H, CHEN H P. China's energy-related mercury emissions: Characteristics, impact of trade and mitigation policies[J]. J Clean Prod, 2017, 141: 1259-1266. doi: 10.1016/j.jclepro.2016.09.200
    [11] YU L, YIN L, XU Q, XIONG Y. Effects of different kinds of coal on the speciation and distribution of mercury in flue gases[J]. J Energy Inst, 2015, 88(2): 136-142. doi: 10.1016/j.joei.2014.06.006
    [12] RALLO M, HEIDEL B, BRECHTEL K, MAROTO-VALER M M. Effect of SCR operation variables on mercury speciation[J]. Chem Engineer J, 2012, 198-199: 87-94. doi: 10.1016/j.cej.2012.05.080
    [13] EOM Y, JEON S, NGO T, KIM J, LEE T. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst[J]. Catal Lett, 2008, 121(3/4): 219-225. doi: 10.1007/s10562-007-9317-0
    [14] ZHOU Z, LIU X, ZHAO B, CHEN Z, SHAO H, WANG L, XU M. Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants[J]. Fuel Process Technol 2015, 131: 99-108. doi: 10.1016/j.fuproc.2014.11.014
    [15] CAO Y, CHENG Q, CHEN C, LIU M, WANG C, PAN W. Abatement of mercury emissions in the coal combustion process equipped with a fabric filter baghouse[J]. Fuel 2008, 87: 3322-3330. doi: 10.1016/j.fuel.2008.05.010
    [16] PUDASAINEE D, KIM J, YOON Y, SEO Y. Oxidation, reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR, CS-ESP and wet FGD[J]. Fuel, 2012, 93: 312-318. doi: 10.1016/j.fuel.2011.10.012
    [17] ZHANG L, ZHUO Y, CHEN L, XU X, CHEN C. Mercury emissions from six coal-fired power plants in China[J]. Fuel Process Technol, 2008, 89(11): 1033-1040. doi: 10.1016/j.fuproc.2008.04.002
    [18] 段钰锋, 江贻满, 杨立国, 王运军.循环流化床锅炉汞排放和吸附实验研究[J].中国电机工程学报, 2008, 28(32): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200832002.htm

    DUAN Yu-feng, JIANG Yi-man, YANG Li-guo, WANG Yun-jun. Experimental study on mercury emission and adsorption in circulating fluidized bed boiler[J]. Proc Chin Soc Electrical Eng, 2014, 28(32): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200832002.htm
    [19] CHENG C, CAO Y, ZHANG K, PAN W. Co-effects of sulfur dioxide load and oxidation air on mercury re-emission in forced-oxidation limestone flue gas desulfurization wet scrubber[J]. Fuel, 2013, 116: 505-511. https://www.researchgate.net/publication/256712446_Co-effects_of_sulfur_dioxide_load_and_oxidation_air_on_mercury_re-emission_in_forced-oxidation_limestone_flue_gas_desulfurization_wet_scrubber
    [20] YUE C, WANG J, HAN L, CHANG L, HU Y, WANG H. Effects of pretreatment of Pd/AC sorbents on the removal of Hg0 from coal derived fuel gas[J]. Fuel Process Technol, 2015, 135: 125-132. doi: 10.1016/j.fuproc.2014.11.038
    [21] RRUPP E C, WILCOX J. Mercury chemistry of brominated activated carbons-Packed-bed breakthrough experiments[J]. Fuel, 2014, 117: 351-353. doi: 10.1016/j.fuel.2013.09.017
    [22] CHANG J C S, ZHAO Y. Pilot plant testing of elemental mercury reemission from a wet scrubber[J]. Energy Fuels, 2007, 22(1): 338-342. http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=461002
    [23] XIN M, GUSTIN M S, LADWIG K. Laboratory study of air-water-coal combustion product (fly ash and FGD solid) mercury exchange[J]. Fuel, 2006, 85(16): 2260-2267. doi: 10.1016/j.fuel.2006.01.029
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  55
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-24
  • 修回日期:  2017-06-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-08-10

目录

    /

    返回文章
    返回