留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阳极改性对微生物燃料电池处理秸秆水解物性能影响

王美聪 刘婷婷 张学军 吴丹 樊立萍

王美聪, 刘婷婷, 张学军, 吴丹, 樊立萍. 阳极改性对微生物燃料电池处理秸秆水解物性能影响[J]. 燃料化学学报(中英文), 2017, 45(9): 1146-1152.
引用本文: 王美聪, 刘婷婷, 张学军, 吴丹, 樊立萍. 阳极改性对微生物燃料电池处理秸秆水解物性能影响[J]. 燃料化学学报(中英文), 2017, 45(9): 1146-1152.
WANG Mei-cong, LIU Ting-ting, ZHANG Xue-jun, WU Dan, FAN Li-ping. Effect of anode modification on the performance of microbial fuel cell for dealing with the straw hydrolysate[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1146-1152.
Citation: WANG Mei-cong, LIU Ting-ting, ZHANG Xue-jun, WU Dan, FAN Li-ping. Effect of anode modification on the performance of microbial fuel cell for dealing with the straw hydrolysate[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1146-1152.

阳极改性对微生物燃料电池处理秸秆水解物性能影响

基金项目: 

国家自然科学基金 41373127

国家自然科学基金 41603001

辽宁省高等学校优秀科技人才支持计划 LR2015052

辽宁省教育厅科学研究一般项目 L2015428

中国与马其顿科技合作第四届例会项目 4-4

辽宁省自然科学基金 20170540724

详细信息
  • 中图分类号: X172

Effect of anode modification on the performance of microbial fuel cell for dealing with the straw hydrolysate

Funds: 

the National Natural Science Foundation of China 41373127

the National Natural Science Foundation of China 41603001

the Program for Liaoning Excellent Talents in University of China LR2015052

General Project of the Education Department of Liaoning Province L2015428

the Fourth Regular Meeting of Science and Technology Cooperation between China and Macedonia 4-4

Liaoning Natural Science Foundation of China 20170540724

More Information
    Corresponding author: WANG Mei-cong, Tel:024-89386988, E-mail:hollyword@163.com, hollywang@syuct.edu.cn
  • 摘要: 以玉米秸秆稀酸水解液为阳极底物,用污水处理厂活性污泥为产电微生物菌源构建双室微生物燃料电池(MFC),采用三种不同方法改性阳极碳毡,并对其MFC产电性能进行研究。结果表明,以未改性碳毡(CC)、HNO3酸解CC(HNO3/CC)、壳聚糖改性CC(chitosan/CC)、PDADMAC/α-Fe2O3层层自组装改性碳毡(PDADMAC/α-Fe2O3/CC)的MFC的最大产电量分别为248、315、452和522 mV,最大功率密度分别为54.6、92.7、203.8和248.1 mW/m2,COD的去除率分别为82.21%、81.46%、82.53%和86.44%。循环伏安曲线显示,PDADMAC/α-Fe2O3层层自组装改性的阳极碳毡具有较高的氧化还原电位。电化学阻抗谱图表明,PDADMAC/α-Fe2O3层层自组装改性碳毡的极化内阻最小,为7 Ω。几种改性材料为阳极的MFC性能依次为PDADMAC/α-Fe2O3/CC >壳聚糖/CC > HNO3/CC >空白CC。
  • 图  1  微生物燃料电池装置示意图

    Figure  1  Diagram of microbial fuel cell device

    图  2  阳极材料表面的扫描电镜照片

    Figure  2  Scanning electron microscopy images of the different anodes

    (a): blank CC; (b): HNO3/CC; (c): chitosan/CC; (d): PDADMAC/α-Fe2O3/CC

    图  3  不同阳极对应的电压输出

    Figure  3  Voltage outputs of MFC with different anodes

    图  4  不同阳极的MFC功率密度曲线

    Figure  4  Power density curves of MFC with different anodes

    图  5  不同阳极对应的MFC极化曲线

    Figure  5  Polarization curves of MFC with different anodes

    图  6  不同阳极对应的循环伏安曲线

    Figure  6  The CV curves of MFC with different anodes

    图  7  不同阳极材料的阻抗谱图

    Figure  7  Electrochemical impedance spectra of MFC with different anodes

    表  1  不同阳极时秸秆各组分的降解率

    Table  1  Degradation rates of various straw components of MFC with different anodes

    Sample w/%
    total sugar yield total quality cellulose hemicellulose lignin
    Blank CC 54.2 37.9 48.9 10.6 1.7
    HNO3/CC 52.7 39.3 52.7 13.1 1.9
    Chitosan/CC 55.9 41.9 57.4 11.7 1.9
    PDADMAC/α-Fe2O3/CC 58.3 44.2 59.7 13.8 1.8
    下载: 导出CSV
  • [1] 彭春艳, 罗怀良, 孔静.中国作物秸秆资源量估算与利用状况研究进展[J].中国农业资源与区划, 2014, 35(3):14-20. doi: 10.7621/cjarrp.1005-9121.20140303

    PENG Chun-yan, LUO Huai-liang, KONG Jing. Advance in estimation and utilization of crop residues resources in China[J]. J Chin Agricul Res Plan, 2014, 35(3):14-20. doi: 10.7621/cjarrp.1005-9121.20140303
    [2] EISENHUBER K, KRENNHUBER K, STEINMULLER V, JAGER A. Comparison of Different Pre-treatment Methods for Separating from Straw During Lignocellulose Bioethanol Production[J]. Energy Procedia, 2013, 40:172-81. doi: 10.1016/j.egypro.2013.08.021
    [3] HONG J L, REN L J, HONG J M, XU C Q. Environmental impact assessment of corn straw utilization in China[J]. J Cleaner Production, 2016, 112(12):1700-8.
    [4] BULENS A, BEIRENDONCK S V, THIELEN J V, BUYS N, DRIESSRN B. Straw applications in growing pigs:Effects on behavior, straw use and growth[J]. App Anim Behav Sci, 2015, 169(30):26-32.
    [5] LOGAN B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nat Rev Microbial, 2009, 7:375-381. doi: 10.1038/nrmicro2113
    [6] HAOYU E, CHENG S, SCOTT K, LOGAN B. Microbial fuel cell performance with non-Pt cathode catalysts[J]. Power Sources, 2007, 171(2):275-281. doi: 10.1016/j.jpowsour.2007.07.010
    [7] 樊立萍, 徐丹丹.电化学法改性阳极对MFC性能的影响[J].燃料化学学报, 2016, 44(5):628-633. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18837.shtml

    FAN Li-ping, XU Dan-dan. Effect of electrochemically modified anode on the performance of MFC[J]. J Fuel Chem Technol, 2016, 44(5):628-633. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18837.shtml
    [8] CRITTENDEN S R, SUND C J, SUMNER J J. Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer[J]. Langmuir, 2006, 22:9473-9476. doi: 10.1021/la061869j
    [9] ERABLE B, DUTEANU N, KUMAR S M S, FENG Y, GHANGREKAR M M, SCOTT K. Nitric acid activation of graphite granules to increase the performance of the non-catalyzed oxygen reduction reaction (ORR) for MFC applications[J]. Electrochem Commun, 2009, 7(11):1547-1549.
    [10] PARK D H, ZEIKUS J G. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens[J]. Appl Microbiol Biotechnol, 2002, 59(1):58-61. doi: 10.1007/s00253-002-0972-1
    [11] PARK D H, ZEIKUS J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation[J]. Biotechnol Bioengin, 2003, 81(3):348-355. doi: 10.1002/(ISSN)1097-0290
    [12] LI C, ZHANG L, DING L, REN H, CUI H. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis[J]. Biosens Bioelectron, 2011, 26(10):4169-4176. doi: 10.1016/j.bios.2011.04.018
    [13] SUN J J, ZHAO H Z, YANG Q Z, SONG J, XUE A. A novel layer-by-layer self-assembled carbon nanotube-based anode:Preparation, characterization, and application in microbial fuel cell[J], Electrochim Acta, 2010, 55:3041-3047. doi: 10.1016/j.electacta.2009.12.103
    [14] PARK H, AYALA P, DESHUSSES M A, MULCHANDANI A, CHOI H, MYUNG N V. Electrodeposition of maghemite (α-Fe2O3) nanoparticles[J]. Chem Eng J, 2008, 139(1):208-212. doi: 10.1016/j.cej.2007.10.025
    [15] SHARMA Y, PARNAS R, LI B. Bioenergy production from glycerol in hydrogen producing bioreactors (HPBs) and microbial fuel cells (MFCs)[J]. Int J Hydrogen Energy, 2011, 36:3853-3861. doi: 10.1016/j.ijhydene.2010.12.040
    [16] LIU R, GAO C Y, ZHAO Y G, WANG A J, LU S S, WANG M, MAQBOOL F, HUANG Q. Biological treatment of steroidal drug industrial effluent and electricity generation in the microbial fuel cells[J]. Bioresour Technol, 2012, 123:86-91. doi: 10.1016/j.biortech.2012.07.094
    [17] VELVIZHI G, GOUD R K, MOHAN S V. Anoxic bio-electrochemical system for treatment of complex chemical wastewater with simultaneous bioelectricity generation[J]. Bioresour Technol, 2014, 115(1):214-220. https://www.cabdirect.org/cabdirect/abstract/20143035540
    [18] QUAN X C, SUN B, XU H D. Anode decoration with biogenic Pd nanoparticles improved power generation in microbial fuel cells[J]. Electrochimica Acta, 2015, 182:815-820. doi: 10.1016/j.electacta.2015.09.157
    [19] 王欢, 郭瓦力, 王洪发, 孙素荣, 张建军.玉米秸秆酸水解制糖新工艺[J].安徽农业科学, 2007, 35(35):11603-11605. doi: 10.3969/j.issn.0517-6611.2007.35.125

    WANG Huan, GUO Wa-li, WANG Hong-fa, SUN Su-rong, ZHANG Jian-jun. New technology of producing sugar by acid hydrolysis of corn straw[J]. J Anhui Agri Sci, 2007, 35(35):11603-11605. doi: 10.3969/j.issn.0517-6611.2007.35.125
    [20] 冯玉杰, 王鑫, 王赫名, 于艳玲, 李冬梅.以玉米秸秆为底物的纤维素降解菌与产电菌联合产电的可行性[J].环境科学学报, 2009, 29(11):2295-2299. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200911009.htm

    FENG Yu-jie, WANG Xin, WANG He-ming, YU Yan-ling, Li Dong-mei. Electricity generation from corn stover by cellulose degradation bacteria and exoelectrogenic bacteria[J]. J Environ Sci, 2009, 29(11):2295-2299. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200911009.htm
    [21] WANG M C, YANG Z Z, XIA M C, FAN L P, ZHANG X J, Wei S H, ZOU T. Performance Improvement of Microbial Fuel Cells by Lactic Acid Bacteria and Anode Modification[J]. Environ Eng Sci. 2017, 34(4):251-257. doi: 10.1089/ees.2016.0110
    [22] 刘春梅. 阳极结构对微生物燃料电池性能影响及阳极传质特性研究[D]. 重庆: 重庆大学, 2013. http://www.doc88.com/p-1156560990082.html

    LIU Chun-mei. Research on the effect of anode structures on the performance of microbial fuel cells and mass transfer characteristics of anodes[D]. Chongqing:Chongqing University, 2013. http://www.doc88.com/p-1156560990082.html
    [23] TORRES C I, MARCUS A K, RITTMANN B E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria[J]. Biotechnol Bioeng, 2008, 100(5):872-881. doi: 10.1002/bit.v100:5
    [24] ROZENDAL R A, HAMELERS H V, BUISMAN C J. Effects of membrane cation transport on pH and microbial fuel cell performance[J]. Environ Sci Technol, 2006, 40(1):5206-5211. https://s3-eu-west-1.amazonaws.com/pstorage-acs-6854636/4767466/es060387r_si_001.pdf
    [25] 曲有鹏, 高珊珊, 吕江维, 李达, 刘俊峰, 田家宇.电化学阻抗技术在微生物燃料电池阻抗测试中的应用[J].实验技术与管理, 2015, 32(7):68-64. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201507019.htm

    QU You-peng, GAO Shan-shan, LÜ Jiang-wei, LI Da, LIU Jiu-feng, TIAN Jia-yu. Application of electrochemical impedance spectroscopy in impedane test of microbial fuel cell impedance[J]. Experiment Technol Manage, 2015, 32(7):68-64. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201507019.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  33
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-01
  • 修回日期:  2017-06-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-09-10

目录

    /

    返回文章
    返回