留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Silicalite-1修饰的HY型分子筛及其对纤维素水解的催化性能

于杰 王景芸 王震 周明东 王海彦

于杰, 王景芸, 王震, 周明东, 王海彦. Silicalite-1修饰的HY型分子筛及其对纤维素水解的催化性能[J]. 燃料化学学报(中英文), 2018, 46(12): 1447-1453.
引用本文: 于杰, 王景芸, 王震, 周明东, 王海彦. Silicalite-1修饰的HY型分子筛及其对纤维素水解的催化性能[J]. 燃料化学学报(中英文), 2018, 46(12): 1447-1453.
YU Jie, WANG Jing-yun, WANG Zhen, ZHOU Ming-dong, WANG Hai-yan. Catalytic performance of silicalite-1 modified HY zeolite in the hydrolysis of cellulose[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1447-1453.
Citation: YU Jie, WANG Jing-yun, WANG Zhen, ZHOU Ming-dong, WANG Hai-yan. Catalytic performance of silicalite-1 modified HY zeolite in the hydrolysis of cellulose[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1447-1453.

Silicalite-1修饰的HY型分子筛及其对纤维素水解的催化性能

基金项目: 

国家自然科学基金 21101085

辽宁省自然科学基金 2015020196

辽宁省自然科学基金 20170540590

抚顺科学计划 FSKJHT 201423

辽宁高校优秀人才培养计划 LJQ2012031

辽宁石油化工大学博士科研启动基金项目 2016XJJ-063

详细信息
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 中图分类号: O643.36

Catalytic performance of silicalite-1 modified HY zeolite in the hydrolysis of cellulose

Funds: 

the National Science Foundation of China 21101085

Natural Science Foundation of Liaoning Province 2015020196

Natural Science Foundation of Liaoning Province 20170540590

the Fushun Science & Technology Program FSKJHT 201423

the Liaoning Excellent Talents Program in University LJQ2012031

Talent Scientific Research Fund of LSHU 2016XJJ-063

More Information
  • 摘要: 采用silicalite-1对HY型分子筛进行修饰,得到具有核壳结构的复合分子筛HY/silicalite-1。通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、N2的吸附-脱附及吡啶吸附红外(Py-FTIR)等手段对不同晶化时间合成的HY/silicalite-1复合分子筛进行了表征,研究了复合分子筛对纤维素水解的催化性能。结果表明,晶化时间直接影响复合分子筛的晶体生长规律和两组分的相对含量,最佳晶化时间为16-24 h,所得到的复合分子筛外貌呈核壳结构,silicalite-1附晶生长在HY型分子筛的表面;随着晶化时间的延长,复合分子筛的表面由胶浊状变为光滑,最终变为鳞片状;其B酸量先减少后增加,而L酸量则先增加后减少。其中,晶化时间为24 h的HY/silicalite-1复合分子筛B酸量最大,L酸量最小,对纤维素水解反应具有良好的催化性能,葡萄糖收率由HY型分子筛催化获得的28.0%大幅提高至45.8%。
    1)  本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 图  1  不同晶化时间合成HY/silicalite-1复合分子筛的XRD谱图

    Figure  1  XRD patterns of HY/silicalite-1 composite zeolites with different crystallization time

    图  2  不同晶化时间HY/silicalite-1的扫描电镜和透射电镜照片

    Figure  2  SEM ((a1), (b1), (c1), (d1)) and TEM ((a2), (b2), (c2), (d2)) images of the HY/silicalite-1 composite zeolites prepared with different crystallization times: ((a1), (a2)) 6 h; ((b1), (b2)) 10 h; ((c1), (c2)) 16 h; ((d1), (d2)) 24 h

    图  3  不同晶化时间合成的HY/silicalite-1氮气吸附-脱附曲线和孔径变化曲线

    Figure  3  N2 adsorption and desorption isotherms (a) and the corresponding BJH pore size distribution (b) of the HY/silicalite-1 composite zeolites prepared with different crystallization times

    图  4  不同反应时间对纤维素水解反应的影响

    Figure  4  Reaction results for the hydrolysis of cellulose over HY (a) and HY/silicalite-1 (b) reaction conditions: 0.5 g MCC, 10.0 g [Emim]Cl, mCat.:mMCC = 0.5, 130 ℃

    表  1  样品的红外酸度分析

    Table  1  Amounts of Brnsted and Lewis acid sites in the HY/silicalite-1 composites

    Sample Acid amount /(mmol·g-1) B/L
    total Brönsted Lewis
    HY 1.272 0.799 0.473 1.7
    HY/silicalite-1-6 h 0.813 0.459 0.354 1.3
    HY/silicalite-1-10 h 0.703 0.238 0.465 0.5
    HY/silicalite-1-16 h 0.782 0.267 0.515 0.5
    HY/silicalite-1-24 h 0.769 0.546 0.223 2.4
    下载: 导出CSV

    表  2  不同催化剂的最佳反应效果

    Table  2  Best results for the hydrolysis of cellulose over HY and HY/silicalite-1

    Catalyst Time t/h Product yield wmol/% Glucose
    selectivity s/%
    TRS oligosaccharide glucose 5-HMF
    HY 2 97.0 1.2 28.0 13.3 29
    HY/silicalite-1 3.5 97.5 16.0 45.8 5.6 46
    下载: 导出CSV
  • [1] GOYAL H B, SEAL D, SAXENA R C. Bio-fuels from thermochemical conversion of renewable resources:A review[J]. Renewable Sustainable Energy Rev, 2008, 12:504-517. doi: 10.1016/j.rser.2006.07.014
    [2] DENG W P, ZHANG Q H, WANG Y. Catalytic transformations of cellulose and its derived carbohydrates into 5-hydroxymethylfurfural, levulinic acid, and lactic acid[J]. Sci China Chem, 2015, 58(1):29-46. doi: 10.1007/s11426-014-5283-8
    [3] HERBST A, JANIAK C. Selective glucose conversion to 5-hydroxymethylfurfural (5-HMF) instead of levulinic acid with MIL-101 CrMOF-derivatives[J]. New J Chem, 2016, 40:7958-7967. doi: 10.1039/C6NJ01399F
    [4] 许庆利, 蓝平, 隋淼, 周明, 闫涌捷.木质纤维素水解制取燃料乙醇研究进展[J].化工进展, 2009, 28(11):1906-1912. http://d.old.wanfangdata.com.cn/Periodical/hgjz200911005

    XU Qing-li, LAN Ping, SUI Miao, ZHOU Ming, YAN Yong-jie. Progress in the hydrolysis of lignocellulosic biomass for fuel-ethanol[J]. Chem Ind Eng Prog, 2009, 28(11):1906-1912. http://d.old.wanfangdata.com.cn/Periodical/hgjz200911005
    [5] RINALDI R, SCHVTH F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes[J]. ChemSusChem, 2009, 21:1096-1107. http://www.onacademic.com/detail/journal_1000033826639510_27a3.html
    [6] WEITKAMP J. Zeolite and catalysis[J]. Solid State Ionics, 2000, 131:175-188. doi: 10.1016/S0167-2738(00)00632-9
    [7] KUNG H H, WILLIAMS B A, BABITZ S M, MILLER J T, HAAG W O. Enhanced hydrocarbon cracking activity of Y zeolites[J]. Top Catal, 2000, 10(1):59-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=32ef981585993a84f030807f4b4b2c50
    [8] ODEDAIRO T, AL-KHATTAF S. Comparative study of zeolite catalyzed alkylation of benzene with alcohols of different chain length:H-ZSM-5 versus mordenite[J]. Catal Today, 2013, 204(15):73-84. http://www.sciencedirect.com/science/article/pii/S0920586112004208
    [9] CHAO P H, TSAI S T, CHANG S L, WANG I, TSAI T C. Hexane isomerization over Hierarchical Pt/MFI Zeolite[J].Top Catal, 2010, 53(3):231-237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=80caa4af981d7c37d2a815bb99779460
    [10] 徐铁钢, 吴显军, 王刚, 李瑞峰.轻质烷烃异构化催化剂研究进展[J].化工进展, 2015, 34(2):397-401. http://d.old.wanfangdata.com.cn/Periodical/hgjz201502017

    XU Tie-gang, WU Xian-jun, WANG Gang, LI Rui-feng. Light paraffin isomerizadon catalyst and its development[J]. Chem Ind Eng Prog, 2015, 34(2):397-401. http://d.old.wanfangdata.com.cn/Periodical/hgjz201502017
    [11] KIRUMAKKI R S, NAGARAJU N, CHARY V R K. Esterification of alcohols with acetic acid over zeolites Hβ, HY and HZSM-5[J]. Appl Catal A:Gen, 2006, 299(1):185-192. http://www.sciencedirect.com/science/article/pii/S0926860X05007969
    [12] ZHOU L P, LIU Z, BAI Y Q, LU T L, YANG X M, XU J. Hydrolysis of cellobiose catalyzed by zeolites-the role of acidity and micropore structure[J]. J Energy Chem, 2016, 25:141-145. doi: 10.1016/j.jechem.2015.11.010
    [13] CAI H, LI C Z, WANG A Q, XU G L, ZHANG T. Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid[J]. Appl Catal B:Environ, 2012, 123/124:333-338. doi: 10.1016/j.apcatb.2012.04.041
    [14] 赵博, 胡尚连, 龚道勇, 李会萍.固体酸催化纤维素水解转化葡萄糖的研究进展[J].化工进展, 2017, 36(2):555-567. http://d.old.wanfangdata.com.cn/Periodical/hgjz201702023

    ZHAO Bo, HU Shang-lian, GONG Dao-yong, LI Hui-ping. New advances on hydrolysis of cellulose to glucose by solid acid[J]. Chem Ind Eng Prog, 2017, 36(2):555-567. http://d.old.wanfangdata.com.cn/Periodical/hgjz201702023
    [15] QIAO K, LI X J, YANG Y, SUBHAN F, LIU X M, YAN Z F, XING W, QIN L H, DAI B Q, ZHANG Z H. Modification of USY zeolites with malic-nitric acid for hydrocracking[J]. Appl Petrochem Res, 2016, 6(4):353-359. doi: 10.1007/s13203-015-0145-7
    [16] GOLA A, REBOURS B, MILAZZO E, LYNCH J, BENAZZI E, LACOMBE S, DELEVOYE L, FEMANDEZ C. Effect of leaching agent in the dealumination of stabilized Y zeolites[J]. Microporous Mesoporous Mater, 2000, 40:73-83. doi: 10.1016/S1387-1811(00)00243-2
    [17] HOSSEINI M, ZANJANCHI M A, GHALAMI-CHOOBAR B, GOLMOJDEH H. Ultrasound-assisted dealumination of zeolite Y[J]. J Chem Sci, 2015, 127(1):25-31. doi: 10.1007/s12039-014-0745-2
    [18] PUENTE G D L, SOUZA-AGUIAR E F, ZOTIN F M Z, CAMORIM V L D, SEDRAN U. Influence of different rare earth ions on hydrogen transfer over Y zeolite[J]. Appl Catal A:Gen, 2000, 197(1):41-46. doi: 10.1016/S0926-860X(99)00531-1
    [19] JIN D F, ZHU B, HOU Z Y, FEI J H, LOU H, ZHENG X M. Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu-Mn-Zn catalysts[J]. Fuel, 2007, 86(17/18):2707-2713. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027075837/
    [20] 孙林平, 李飞, 张龙.稀土金属氧化物对Y分子筛吸附脱硫性能的影响[J].燃料化学学报, 2013, 41(4):499-505. doi: 10.3969/j.issn.0253-2409.2013.04.017

    SUN Lin-ping, LI Fei, ZHANG Long. Effects of rare-earth metal oxides on the desulfurization of Y zeolite[J]. J Fuel Chem Technol, 2013, 41(4):499-505. doi: 10.3969/j.issn.0253-2409.2013.04.017
    [21] SANTOS R C R, VALENTINI A, LIMA C L, FILHO J M, OLIVEIRA A C. Modifications of an HY zeolite for n-octane hydroconversion[J]. Appl Catal A:Gen, 2011, 403:65-74. doi: 10.1016/j.apcata.2011.06.011
    [22] MURAKAMI Y. Super selective catalysis by CVD zeolite[J]. Stud Surf Sci Catal, 1989, 44:177-188. doi: 10.1016/S0167-2991(09)61292-1
    [23] JIA L X, SUN X Y, YE X Q, ZOU C L, GU H F, HUANG Y, NIU G X, ZHAO D Y. Core-shell composites of USY@Mesosilica:Synthesis and application in cracking heavy molecules with high liquid yield[J]. Microporous Mesoporous Mater, 2013, 176:16-24. doi: 10.1016/j.micromeso.2013.03.029
    [24] LI H S, HE S C, MA K, WU Q, JIAO Q Z, SUN K N. Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether:Effect of SiO2/Al2O3 ratio in H-ZSM-5[J]. Appl Catal A:Gen, 2013, 450:152-159. doi: 10.1016/j.apcata.2012.10.014
    [25] ZHENG J J, SUN X B. Structural features of core-shell zeolite-zeolite composite and its performance for methanol conversion into gasoline and diesel[J]. J Mater Res, 2016, 31(15):2302-2316. doi: 10.1557/jmr.2016.208
    [26] MORES D, STAVITSKI E, VERKLEIJ S P, LOMBARD A, CABIAC A, ROULEAU L, PATARIN J, SIMON-MASSERON A, WECKHUYSEN B M. Core-shell H-ZSM-5/silicalite-1 composites:Brønsted acidity andcatalyst deactivation at the individual particle level[J]. Phys Chem Chem Phys, 2011, 13:15985-15994. doi: 10.1039/c1cp21324e
    [27] VU D V, MIYAMOTO M, NISHIYAMA N, EGASHIRA Y, UEYAMA K. Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals[J]. J Catal, 2006, 243(2):389-394. doi: 10.1016/j.jcat.2006.07.028
    [28] 于杰, 王景芸, 王震, 周明东, 王海彦.复合分子筛的合成及其在纤维素水解反应中的应用[J].燃料化学学报, 2018, 46(4):419-426. doi: 10.3969/j.issn.0253-2409.2018.04.007

    YU Jie, WANG Jing-yun, WANG Zhen, ZHOU Ming-dong, WANG Hai-yan. Synthesis of composite zeolites and their performance in hydrolysis of cellulose[J]. J Fuel Chem Technol, 2018, 46(4):419-426. doi: 10.3969/j.issn.0253-2409.2018.04.007
    [29] MILLER G L. Use of dinitrosaIicyIic acid reagent for determination of reducing sugar[J]. Anal Chem, 1959, 31:426-428. doi: 10.1021/ac60147a030
    [30] HUANG Y, WANG K, DONG D H, LI D, HILL M R, HILL A J, WANG H T. Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes[J]. Microporous Mesoporous Mater, 2010, 127:167-175. doi: 10.1016/j.micromeso.2009.07.026
    [31] SMALLOD L M, WHITE R L. Zeolite catalyzed hydrolysis in aqueous and ionic liquid media[J]. J Biomass Biofuel, 2014, 1:1-7.
    [32] JEONG H, KIM Y, LEE Y, KANG M. Control of acidity on the external surface of zeolite Y for m-xylene isomerization using a mechanochemical neutralization method[J]. Korean J Chem Eng, 2009, 26(2):371-376. doi: 10.1007/s11814-009-0062-5
    [33] 徐如人, 庞文琴, 于吉红, 霍启升, 陈接胜.分子筛与多孔材料化学[M].北京:科学出版社, 2004.

    XU Ru-ren, PANG Wen-qin, YU Ji-hong, HUO Qi-sheng, CHEN Jie-sheng. Chemistry-Zeolites and Porous Materials[M]. Beijing:Science press, 2004.
    [34] QI X H, WATANABE M, AIDA T M, SMITH R L. Catalytic conversion of cellulose into 5-hydroxymethylfurfural in high yields via a two-step process[J]. Cellulose, 2011, 18:1327-1333. doi: 10.1007/s10570-011-9568-1
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  46
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-29
  • 修回日期:  2018-08-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-12-10

目录

    /

    返回文章
    返回