留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤基和石油基C7-沥青质的结构特征及缔合行为

杜俊涛 张大奎 张敏鑫 郏慧娜 聂毅 孙一凯 邓文安 李传

杜俊涛, 张大奎, 张敏鑫, 郏慧娜, 聂毅, 孙一凯, 邓文安, 李传. 煤基和石油基C7-沥青质的结构特征及缔合行为[J]. 燃料化学学报(中英文), 2020, 48(6): 674-682.
引用本文: 杜俊涛, 张大奎, 张敏鑫, 郏慧娜, 聂毅, 孙一凯, 邓文安, 李传. 煤基和石油基C7-沥青质的结构特征及缔合行为[J]. 燃料化学学报(中英文), 2020, 48(6): 674-682.
DU Jun-tao, ZHANG Da-kui, ZHANG Min-xin, JIA Hui-na, NIE Yi, SUN Yi-kai, DENG Wen-an, LI Chuan. Structure characteristics and association behavior of coal and petroleum C7-asphaltenes[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 674-682.
Citation: DU Jun-tao, ZHANG Da-kui, ZHANG Min-xin, JIA Hui-na, NIE Yi, SUN Yi-kai, DENG Wen-an, LI Chuan. Structure characteristics and association behavior of coal and petroleum C7-asphaltenes[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 674-682.

煤基和石油基C7-沥青质的结构特征及缔合行为

基金项目: 

国家自然科学基金项目 21908206

详细信息
  • 中图分类号: TQ524

Structure characteristics and association behavior of coal and petroleum C7-asphaltenes

Funds: 

the National Natural Science Foundation of China 21908206

More Information
  • 摘要: 采用核磁(NMR)、小角散射分析(SAXS)、X射线光电子能谱(XPS)、改进的B-L法等手段,研究了煤基C7-沥青质(CT-asp)和石油基C7-沥青质(M-asp)两类沥青质的化学组成、官能团和分子结构等组成结构特征以及差异性,进而通过极性溶剂中沥青质稳定参数研究两类沥青质的缔合行为和聚集体尺寸以及两者之间的氢键和酸碱作用。结果表明,CT-asp分子芳香环数较少且有较多短烷基侧链,且芳香度较高,较高含量氧杂原子以芳香醚和酚羟基赋存形态为主;而M-asp的芳香核尺寸和平均相对分子质量明显高于CT-asp,芳香环数虽较多且有较多长烷基支链,且芳香度较小;两类沥青质缔合聚集程度关联物质的量比(nCT-asp/nM-asp)及其分子结构特征,源于杂原子官能团的氢键和酸碱作用是两类沥青质缔合的主要作用力。
  • 图  1  煤基沥青质和石油基沥青质的FT-IR谱图

    Figure  1  FT-IR spectra of the CT-asp and M-asp

    图  2  煤基沥青质XPS谱图中O、N和S分峰

    Figure  2  XPS spectra curve-resolution of O, N and S in the CT-asp

    图  3  煤基沥青质C-O键FT-IR分峰谱图

    Figure  3  FT-IR curve-resolution results for C-O bond in CT-asp

    图  4  沥青质缔合行为与(nCT-asp/nM-asp)关联

    Figure  4  Relation of the asphaltenes association behavior and (nCT-asp/nM-asp)

    图  5  煤基沥青质氢键分峰

    Figure  5  FT-IR curve-resolution of CT-asp for hydrogen bonds

    表  1  煤基沥青质和石油基沥青质的元素分析

    Table  1  Elemental analysis of CT-asp and M-asp

    Element analysis CT-asp M-asp
    C w/% 78.38 82.13
    H w/% 6.17 7.48
    S w/% 0.36 2.23
    N w/% 1.68 4.90
    Total(C H S N) w/% 86.59 96.74
    H/C (atomic ratio) 0.95 1.09
    下载: 导出CSV

    表  2  煤基沥青质和石油基沥青质的杂原子官能团(O、N和S)分析

    Table  2  XPS curve-resolution results for O, N and S

    Atom type Binding energy
    E/eV
    Atomic ratio per 100 carbons /%
    CT-asp M-asp
    Oxygen type C=O 531.8 2.10 1.14
    and content C-O-C, C-OH, C-O 532.9 4.72 1.29
    COO- 534.1 1.65 0.49
    total - 8.47 2.92
    Nitrogen type pyridinic-N 398.8 0.33 0.97
    and content pyrrolic-N 399.9 1.20 1.02
    quaternary-N 401.1 0.76 0.24
    total - 2.29 2.23
    Sulfur type alkyl sulfides 163.4 0.13 1.07
    and content thiophenes 164.8 0.09 0.50
    sulfoxides 165.6 0.14 -
    total - 0.37 1.57
    下载: 导出CSV

    表  3  沥青质C-O键的类型(原子比)

    Table  3  FT-IR curve-resolution results for C-O bond

    Peak position
    /cm-1
    Assignment Atomic ratio /%
    CT-asp M-asp
    1043 alkyl ether group (-C-O-C-) 12.30 24.02
    1175 C-O vinration of phenols 34.02 35.95
    1290 aromatic ether groups 40.75 31.00
    1715 carboxyl group (-COOH) 12.93 9.03
    phenols/(phencols+ether) 39.08 39.50
    下载: 导出CSV

    表  4  沥青质的1H-NMR平均结构参数

    Table  4  Average molecular structural parameters of CT-asp and M-asp from 1H-NMR

    Structural parameter Value
    CT-asp M-asp
    HA watom/% 37.8 8.6
    Hα watom/% 42.6 22.6
    Hβ watom/% 15.9 49.3
    Hγ watom/% 3.7 19.5
    M (relative molecular mass VPO) 416 1950
    fA (aromatic carbon weight ratio) 0.71 0.53
    fN (naphthenic carbon weight ratio) 0.18 0.17
    fP (alkyl carbon weight ratio) 0.11 0.33
    RT (total rings per average molecule) 5.76 28.63
    RA (aromatic rings per average molecule) 4.34 20.87
    RN (naphthenic rings per average molecule) 1.42 7.76
    CA (aromatic carbons per average molecule) 19.34 66.62
    CN (naphthenic carbons per average molecule) 4.92 23.28
    CP (alkyl carbons per average molecule) 2.91 43.34
    CS (saturated carbons per average molecule) 7.83 66.62
    HA/CA (aromatic rings condensation degree) 0.78 0.42
    σ (aromatic rings substitution degree) 0.48 0.59
    下载: 导出CSV

    表  5  沥青质的13C-NMR平均结构参数

    Table  5  Average structural parameters of CT-asp and M-asp from 13C-NMR

    Chemical shift Type of carbon Atomic ratio per 100 carbons /%
    CT-asp M-asp
    0-25 methyl 12.9 17.0
    25-50 methylene 13.1 31.0
    50-70 methoxy, ether, alcohol 3.7 1.1
    90-135 aromatic carbon bound to hydrogen 47.3 28.0
    135-148 bridgehead or alkyl-substituted aromatic carbon 9.6 18.7
    148-171 oxy-aromatic carbon 7.2 2.0
    171-220 carboxyl, ester, carbonyl, ketone 6.1 2.2
    0-90 aliphatic carbon (Cal) 29.7 49.1
    90-220 aromatic carbon (Car) 70.3 50.9
    下载: 导出CSV

    表  6  沥青质缔合体的氢键分布

    Table  6  Hydrogen bonds distribution of asphaltenes aggregation

    Position /cm-1 Abbreviation Atomic ratio /%
    CT-asp M-asp MC-asp
    3610 free OH groups 0.70 1.31 2.01
    3530 OH-π HBs 17.31 35.10 23.99
    3400 OH-OH self associated 35.74 53.07 41.60
    3300 OH-ether O HBs 21.63 4.66 17.33
    3200 tightly bound cyclic OH tetramers 13.57 5.23 10.71
    3150 OH-N (acidic/basic strctures) 11.05 0.62 4.35
    下载: 导出CSV

    表  7  沥青质的酸碱官能团

    Table  7  Acidic and basic groups of CT-asp and M-asp

    Functional groups Atomic ratio /% Functional groups Atomic ratio /%
    CT-asp M-asp CT-asp M-asp
    Neutral C=O 2.10 1.14 acidic alkyl sulfides 0.15 1.07
    Neutral C-O- C 2.87 0.50 basic thiophenes 0.09 0.50
    Acidic C-OH, C-O 1.84 0.79 neutral sulfoxides 0.04 0
    Acidic COO- 1.65 0.49 neutral sulfones 0.08 0
    Basic pyridinic-N 0.33 0.97 total of acid 3.64 2.35
    Neutral pyrrolic-N 1.20 1.02 total of 1.18 1.71
    Basic quaternary-N 0.76 0.24 relative acidity 2.46 0.64
    下载: 导出CSV
  • [1] KAN T, SUN X, WANG H, LI C, MUHAMMAD U. Production of gasoline and diesel from coal tar via its catalytic hydrogenation in serial fixed beds[J]. Energy Fuels, 2012, 26(6):3604-3611. doi: 10.1021/ef3004398
    [2] 张倩玉, 许志明, 赵锁奇.低温煤焦油常渣C5沥青质的分离与表征[J].燃料化学学报, 2016, 44(11):1318-1325. doi: 10.3969/j.issn.0253-2409.2016.11.006

    ZHANG Qian-yu, XU Zhi-ming, ZHAO Suo-qi. Separation and characterization of C5-asphaltene from low temperature coal tar[J]. J Fuel Chem Technol, 2016, 44(11):1318-1325. doi: 10.3969/j.issn.0253-2409.2016.11.006
    [3] ANGELES M J, LEYVA C, ANCHEYTA J, RAMÍREZ S. A review of experimental procedures for heavy oil hydrocracking with dispersed catalyst[J]. Catal Today, 2014, 220-222, 274-294. https://www.sciencedirect.com/science/article/abs/pii/S0920586113003908
    [4] LI C, DU J, YANG T, DENG W. Exploratory investigation on the slurry-phase hydrocracking reaction behavior of coal tar and petroleum-based heavy oil mixed raw material[J]. Energy Fuels, 2019, 33(9):8471-8482. doi: 10.1021/acs.energyfuels.9b02031
    [5] 盛强, 王刚, 金楠, 张淇源, 高成地, 高金森.石油沥青质的微观结构分析和轻质化[J].化工进展, 2019, 38(3):1147-1159. http://d.old.wanfangdata.com.cn/Periodical/hgjz201903001

    SHENG Qiang, WANG Gang, JIN Nan, ZHANG Qi-yuan, GAO Cheng-di, GAO Jin-sen. Petroleum asphaltene micro-structure analysis and lightening[J]. Chem Ind Eng Prog, 2019, 38(3):1147-1159. http://d.old.wanfangdata.com.cn/Periodical/hgjz201903001
    [6] 张文, 龙军, 任强, 蔡新恒.沥青质分子聚集行为研究进展[J].化工进展, 2019, 38(5):2158-2163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201905011

    ZHANG Wen, LONG Jun, REN Qiang, CAI Xin-heng. Research progress on aggregation behavior of asphaltene[J]. Chem Ind Eng Prog, 2019, 38(5):2158-2163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201905011
    [7] 隆建, 沈本贤, 赵基钢, 凌昊, 卢俊财.减压渣油掺炼煤焦油改善常压溶剂脱沥青过程的机理[J].石油学报(石油加工), 2012, 28(1):69-75. doi: 10.3969/j.issn.1001-8719.2012.01.013

    LONG Jian, SHEN Ben-xian, ZHAO Ji-gang, LING Hao, LU Jun-cai. Mechanism of improving atmospheric solvent deasphalting process by vacuum residue blending with coal tar[J]. Acta Pet Sin(Pet Process Sect):2012, 28(1):69-75. doi: 10.3969/j.issn.1001-8719.2012.01.013
    [8] 孟兆会, 杨圣斌, 杨涛, 郭蓉.减压渣油掺炼煤焦油相容性及加氢处理研究[J].石油炼制与化工, 2014, 45(5):25-28. doi: 10.3969/j.issn.1005-2399.2014.05.005

    MENG Zhao-hui, YANG Sheng-bin, YANG Tao, GUO Rong. Study on stability of vacuum residue blending coal tar and hydrocracking of mixture[J]. Chin Pet Process Petrochem Technol, 2014, 45(5):25-28. doi: 10.3969/j.issn.1005-2399.2014.05.005
    [9] 胡建宏, 程相林, 李国宁, 武建军, 汲伟, 王永刚, 王柏川.煤沥青可溶组分在甲苯中缔合行为的研究[J].燃料化学学报, 2014, 42(7):774-778. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18443.shtml

    HU Jian-hong, CHENG Xiang-lin, LI Guo-ning, WU Jian-jun, JI Wei, WANG Yong-gang, WANG Bai-chuan. Association behavior of coal tar pitch soluble components in toluene[J]. J Fuel Chem Technol, 2014, 42(7):774-778. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18443.shtml
    [10] YUDIN I K, NIKOLAENKO G L, GORODETSKII E E, KOSOV V I, MELIKYAN V R, MARKHASHOV E L, FROT D, BRIOLANT Y. Mechanisms of asphaltene aggregation in toluene-heptane mixtures[J]. J Pet Sci Eng, 1998, 20(3/4):297-301. https://www.sciencedirect.com/science/article/pii/S0920410598000333
    [11] HAJI-AKBARI N, TEERAPHAPKUL P, FOGLER H S. Effect of asphaltene concentration on the aggregation and precipitation tendency of asphaltenes[J]. Energy Fuels, 2014, 28(2):909-919. doi: 10.1021/ef4021125
    [12] ANISIMOV M A, GANEEVA Y M, GORODETSKII E E, DESHABO V A, KOSOV V I, KURYAKOV V N, YUDIN D I, YUDIN I K. Effects of resins on aggregation and stability of asphaltenes[J]. Energy Fuels, 2014, 28(10):6200-6209. doi: 10.1021/ef501145a
    [13] KRAIWATTANAWONG K, FOGLER H S, GHARFEH S G, SINGH P, THOMASON W H, CHAVADEJ S. Effect of asphaltene dispersants on aggregate size distribution and growth[J]. Energy Fuels, 2009, 23(3):1575-1582. doi: 10.1021/ef800706c
    [14] GRAY M R, TYKWINSKI R R, STRYKER J M, TAN X. Supramolecular assembly model for aggregation of petroleum asphaltenes[J]. Energy Fuels, 2011, 25(7):3125-3134. doi: 10.1021/ef200654p
    [15] GABRIENKO A A, MARTYANOV O N, KAZARIAN S G. Effect of temperature and composition on the stability of crude oil blends studied with chemical imaging[J]. Energy Fuels, 2015, 29(11):7114-7123. doi: 10.1021/acs.energyfuels.5b01880
    [16] AGRAWALA M, YARRANTON H W. An asphaltene association model analogous to linear polymerization[J]. Ind Eng Chem Res, 2001, 40(21):4664-4672. doi: 10.1021/ie0103963
    [17] RAKOTONDRADANY F, FENNIRI H, RAHIMI P, GAWRYS K L, KILPATRICK P K, GRAY M R. Hexabenzocoronene model compounds for asphaltene fractions:Synthesis & characterization[J]. Energy Fuels, 2006, 20(6):2439-2447. doi: 10.1021/ef060130e
    [18] LI P, ZONG Z, LI Z, WANG Y, LIU F, WEI X. Characterization of basic heteroatom-containing organic compounds in liquefaction residue from Shenmu-Fugu subbituminous coal by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Fuel Process Technol, 2015, 132:91-98. doi: 10.1016/j.fuproc.2014.12.026
    [19] DU J, DENG W, LI C, ZHANG Z, YANG T, GUO R. Reactivity and structure changes of coal tar asphaltene during slurry-phase hydrocracking[J]. Energy Fuels, 2017, 31(2):1858-1865. doi: 10.1021/acs.energyfuels.6b02992
    [20] XIONG G, LI Y, JIN L, HU H. In situ FT-IR spectroscopic studies on thermal decomposition of the weak covalent bonds of brown coal[J]. J Anal Appl Pyroysisl, 2015, 115:262-267. doi: 10.1016/j.jaap.2015.08.002
    [21] FERGOUG T, BOUHADDA Y. Determination of Hassi Messaoud asphaltene aromatic structure from 1H & 13C NMR analysis[J]. Fuel, 2014, 115:521-526. doi: 10.1016/j.fuel.2013.07.055
    [22] DUTTA MAJUMDAR R, BAKE K D, RATNA Y, POMERANTZ A E, MULLINS O C, GERKEN M, HAZENDONK P. Single-core PAHs in petroleum-and coal-derived asphaltenes:Size and distribution from solid-state NMR spectroscopy and optical absorption measurements[J]. Energy Fuels, 2016, 30(9):6892-6906. doi: 10.1021/acs.energyfuels.5b02815
    [23] ALHUMAIDAN F S, HAUSER A, RANA M S, LABABIDI H M S, BEHBEHANI M. Changes in asphaltene structure during thermal cracking of residual oils:XRD study[J]. Fuel, 2015, 150:558-564. doi: 10.1016/j.fuel.2015.02.076
    [24] SCHNEIDER M H, ANDREWS A B, MITRA-KIRTLEY S, MULLINS O C. Asphaltene molecular size by fluorescence correlation spectroscopy[J]. Energy Fuels, 2007, 21(5):2875-2882. doi: 10.1021/ef700216r
    [25] JIN N, WANG G, HAN S, MENG Y, XU C, GAO J. Hydroconversion behavior of asphaltenes under liquid-phase hydrogenation conditions[J]. Energy Fuels, 2016, 30(4):2594-2603. doi: 10.1021/acs.energyfuels.5b02765
    [26] SUN Z, LI D, MA H, TIAN P, LI X, LI W, ZHU Y. Characterization of asphaltene isolated from low-temperature coal tar[J]. Fuel Process Technol, 2015, 138:413-418. doi: 10.1016/j.fuproc.2015.05.008
    [27] XIA W, YANG J. Reverse flotation of Taixi oxidized coal[J]. Energy Fuels, 2013, 27(12):7324-7329. doi: 10.1021/ef4017224
    [28] EYSSAUTIER J, LEVITZ P, ESPINAT D, JESTIN J, GUMMEL J, GRILLO I, BARRE L. Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering[J]. J Phys Chem B, 2011, 115(21):6827-6837. doi: 10.1021/jp111468d
    [29] 张庆, 邓文安, 李传, 吴乐乐.稠油沥青质的基本化学组成结构与缔合性研究[J].石油炼制与化工, 2014, 45(6):20-25. doi: 10.3969/j.issn.1005-2399.2014.06.007

    ZHANG Qing, DENG WEN-an, LI Chuan, WU Le-le. Study on basic chemical structure and association of asphaltene in heavy oil[J]. Chin Pet Process Petrochem Technol, 2014, 45(6):20-25. doi: 10.3969/j.issn.1005-2399.2014.06.007
    [30] JUYAL P, MERINO-GARCIA D, ANDERSEN S I. Effect on molecular interactions of chemical alteration of petroleum asphaltenes[J]. Energy Fuels, 2005, 19(4):1272-1281. doi: 10.1021/ef050012b
    [31] LIU X, HIRAJIMA T, NONAKA M, SASAKI K. Investigation of the changes in hydrogen bonds during low-temperature pyrolysis of lignite by diffuse reflectance FT-IR combined with forms of water[J]. Ind Eng Chem Res, 2015, 54(36):8971-8978. doi: 10.1021/acs.iecr.5b02474
    [32] 张龙力, 王春岚, 赵元生, 杨国华, 杨朝合.塔河常压渣油沥青质含硫官能团形态与其性质的关系研究[J].燃料化学学报, 2012, 40(9):1081-1085. doi: 10.3969/j.issn.0253-2409.2012.09.009

    ZHANG Long-li, WANG Chun-lan, ZHAO Yuan-sheng, YANG Guo-hua, YANG Chao-he. Study on the relationship between sulfur functionalities and the characteristics of THAR asphaltene[J]. J Fuel Chem Technol, 2012, 40(9):1081-1085. doi: 10.3969/j.issn.0253-2409.2012.09.009
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  65
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 修回日期:  2020-06-05
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-06-10

目录

    /

    返回文章
    返回