留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu单原子修饰对Fe(111)表面CO吸附性能及电子性质调变的第一性原理研究

孟宇 刘小艳 白苗苗 王英 马亚军 曹直

孟宇, 刘小艳, 白苗苗, 王英, 马亚军, 曹直. Cu单原子修饰对Fe(111)表面CO吸附性能及电子性质调变的第一性原理研究[J]. 燃料化学学报(中英文), 2020, 48(4): 440-447.
引用本文: 孟宇, 刘小艳, 白苗苗, 王英, 马亚军, 曹直. Cu单原子修饰对Fe(111)表面CO吸附性能及电子性质调变的第一性原理研究[J]. 燃料化学学报(中英文), 2020, 48(4): 440-447.
MENG Yu, LIU Xiao-yan, BAI Miao-miao, WANG Ying, MA Ya-jun, CAO Zhi. First-principles study on the CO adsorption and electronic properties of Fe (111) modified by Cu single atom[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 440-447.
Citation: MENG Yu, LIU Xiao-yan, BAI Miao-miao, WANG Ying, MA Ya-jun, CAO Zhi. First-principles study on the CO adsorption and electronic properties of Fe (111) modified by Cu single atom[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 440-447.

Cu单原子修饰对Fe(111)表面CO吸附性能及电子性质调变的第一性原理研究

基金项目: 

陕西省自然科学基础研究计划项目 2019JQ-905

陕西省自然科学基础研究计划项目 2018JZ2004

陕西省教育厅科研计划项目 19JS071

榆林市2019年科技计划项目 2019-83-1

榆林学院博士科研启动基金 17GK12

榆林学院博士科研启动基金 17GK13

煤转化国家重点实验室开放课题基金 J20-21-908

详细信息
  • 中图分类号: O643.32

First-principles study on the CO adsorption and electronic properties of Fe (111) modified by Cu single atom

Funds: 

Natural Science Foundation Research Program of Shaanxi province 2019JQ-905

Natural Science Foundation Research Program of Shaanxi province 2018JZ2004

Scientific Research Program Funded by Shaanxi Provincial Education Department 19JS071

Scientific Research Program Funded by Yulin Government 2019-83-1

PhD Research Startup Foundation of Yulin University 17GK12

PhD Research Startup Foundation of Yulin University 17GK13

Foundation of State Key Laboratory of Coal Conversion J20-21-908

More Information
  • 摘要: 采用密度泛函理论方法研究了Cu单原子修饰对Fe(111)表面CO吸附性能和电子性质的调变作用,其中,Cu单原子修饰研究了吸附和取代两种方式。结果表明,CO在Cu修饰的Fe(111)面吸附能力都会变弱,一是Cu原子自身提供的位点对CO的吸附较弱;二是Cu会使其附近的Fe对CO的吸附变弱。分析电子性质表明,Cu作用于Fe表面后,会导致Cu附近Fe原子部分电子向Cu原子转移,进而削弱了Fe与吸附分子间电子交互作用而改变Fe原子的吸附能力。故Cu原子改性Fe表面可以很好地调变CO的吸附、解离及后续反应催化活性,这为进一步探究Cu改性Fe表面的合成气催化反应机理提供了基础信息。
  • 图  1  Cu在Fe (111)面的稳定作用结构和对应能量

    Figure  1  Stability of structure and the corresponding energy of Cu acted with Fe(111)

    (a): Cu adsorbed on deep hole; (b): Cu adsorbed on the shallow hole; (c): Cu instead of surface Fe; (d): Cu instead of subsurface Fe (light blue for the outermost Fe, gray for subsurface Fe, dark blue for the third layer of Fe)

    图  2  CO在Cu吸附的Fe(111)面的稳定结构和对应吸附能

    Figure  2  Optimized structures and the corresponding adsorption energies of CO adsorbed on different sites of Cu-ads-DH

    图  3  CO在Cu替换一个Fe原子的稳定结构和对应吸附能

    Figure  3  Optimized structures and the corresponding adsorption energies of CO adsorbed on different sites of Cu-sub-OM

    图  4  三种表面的态密度分布

    Figure  4  Density of states for three surface models

    (a): pure Fe(111); (b): Cu-ads-DH; (c): Cu-sub-OM (1stFe refer to the outermost layer Fe, 2ndFe refer to the sublayer Fe, Cu refer to adsorbed or substituted Cu)

    图  5  Cu改性模型的差分电荷示意图

    Figure  5  Difference charge density of Cu-ads-DH and Cu-subs-OM

    (a): Cu-ads-DH; (b): Cu-subs-OM (left for 3D distribution, right for 2D section distribution)

    图  6  CO在纯Fe (111)、Cu-ads-DH和Cu-subs-OM表面1stFe顶位吸附的Fe-C和C-O键-COHP和对应原子PDOS

    Figure  6  -COHP of C-O bond and PDOS of Fe (C) for three models

    (a)-(d): CO adsorbed on pure Fe (111); (e)-(f): CO adsorbed on Cu-ads-DH; (i)-(l): CO adsorbed on Cu-subs-OM

    表  1  CO在纯Fe (111)、Cu-ads-DH和Cu-sub-OM三种不同表面吸附能及C-O键长比较

    Table  1  Comparison of adsorption energy (eV) and bond length (nm) of CO on pure Fe (111) surface and Cu modified Fe (111)

    Adsorption site Fe (111) Cu-ads-DH Cu-subs-OM
    dM-C dC-O Eads dM-C dC-O Eads dM-C dC-O Eads
    CO top-Cu - - - 0.1517 - -1.10 0.1526 - -1.10
    top-1thFe 0.1586 - -1.95 0.1705 - -1.55 0.1584 - -1.36
    (adjacent Cu) 0.1672
    top-2thFe 0.1603 - -2.68 0.1760 - -1.84 0.1672 - -1.94
    (adjacent Cu) 0.1806 0.1763
    Fe-Fe-bri -2.52 -1.91 -2.09
    下载: 导出CSV

    表  2  纯Fe (111)、Cu-ads-DH和Cu-subs-OM三种结构表层原子Bader电荷分析

    Table  2  Bader charge of surface atoms of pure Fe (111) and Cu-ads-DH and Cu-subs-OM models

    Fe(111) Cu-ads-DH Cu-subs-OM
    Cu-Δ(e) - 0.239 0.147
    1stFe-Δ(e) -0.086 -0.101 -0.032
    2ndFe-Δ(e) 0.160 0.032 0.035
    (1stFe+ 2ndFe) -Δ(e) 0.074 -0.069 0.003
    下载: 导出CSV
  • [1] ZHANG Q, KANG J, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis:Tuning the product selectivity[J]. ChemCatChem, 2010, 2:1030-1058. doi: 10.1002/cctc.201000071
    [2] 王润平, 毛树红, 池永庆, 段秀琴, 刘军.费托合成铁基催化剂助剂的研究概述[J].天津化工, 2008, 22:17-19. http://d.old.wanfangdata.com.cn/Periodical/tjhg200801006

    WANG Run-ping, MAO Shu-hong, CHI Yong-hong, DUAN Xiu-qin, LIU Jun. Overview of the study on FT synthesis of iron-based catalyst auxiliaries[J]. Tianjin Chem Ind, 2008, 22:17-19. http://d.old.wanfangdata.com.cn/Periodical/tjhg200801006
    [3] HUO C F, WU B S, GAO P, YANG Y, LI Y W, JIAO H. The mechanism of potassium promoter:Enhancing the stability of active surfaces[J]. Angew Chem Int Ed, 2011, 50:7403-7406. doi: 10.1002/anie.201007484
    [4] VAN STEEN E, CLAEYS M. Fischer-Tropsch catalysts for the biomass-to-liquid process[J]. Chem Eng Technol, 2008, 31:655-666. doi: 10.1002/ceat.200800067
    [5] CHONCO Z H, FERREIRA A, LODYA L, CLAEYSM, VAN STEEN E. Comparing silver and copper as promoters in Fe-based Fischer-Tropsch catalysts using delafossite as a model compound[J]. J Catal, 2013, 307:283-294. doi: 10.1016/j.jcat.2013.08.005
    [6] CHONCO Z H, LODYA L, CLAEYS M, VAN STEEN E. A model for investigating the role of copper in the dynamic iron-based Fischer-Tropsch catalyst[J]. J Catal, 2013, 308:363-373. doi: 10.1016/j.jcat.2013.08.012
    [7] O'BRIEN R J, DAVIS B H. Impact of copper on an alkali promoted Iron Fischer-Tropsch catalyst[J]. Catal Lett, 2004, 94:1-6. doi: 10.1023/B:CATL.0000019322.69160.ef
    [8] 胡伟.合成气制低碳醇Cu-Fe催化剂的制备及改性机制研究[D].上海: 华东理工大学, 2017.

    HU Wei. Preparation Of Cu-Fe Catalysts For Low Carbon Alcohols And Mechanism Research[D]. Shanghai: East China University of Science and Technology, 2017.
    [9] 李明阳, 李涛.铁改性Cu/Zn/MgO催化剂对合成气制低碳醇的影响[J].精细化工, 2015, 32(6):646-651. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxhg201506010

    LI Ming-yang, LI Tao. Effect of Fe modified Cu/Zn/MgO catalyst on the synthesis of lower alcohol from syngas[J]. Fine Chem, 2015, 32(6):646-651. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxhg201506010
    [10] HE S, WANG W, SHEN Z. Carbon nanotube-supported bimetallic Cu-Fe catalysts for syngas conversion to higher alcohols[J]. Mol Catal, 2019, 479:110610. doi: 10.1016/j.mcat.2019.110610
    [11] SHI X, YU H, GAO S. Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu-Fe catalyst for the synthesis of higher alcohols from syngas[J]. Fuel, 2017, 210:241-248. doi: 10.1016/j.fuel.2017.08.064
    [12] WANG T, TIAN X X, LI Y W, WANG J, BELLER M, JIAO H. Coverage-dependent CO adsorption and dissociation mechanisms on iron surfaces from DFT computations[J]. ACS Catal, 2014, 4(6):1991-2005. doi: 10.1021/cs500287r
    [13] WANG T, TIAN X, YANG Y, LI Y, WANG J, BELLER M, JIAO H. Co-adsorption and mutual interaction of nCO+mH2 on the Fe(110) and Fe(111) surfaces[J]. Catal Today, 2015, 261:82-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7decc2de97469e87db4578743d442035
    [14] LIU S, LI Y, WANG J, JIAO H. Reactions of CO, H2O, CO2, and H2 on the clean and precovered Fe(110) surfaces-A DFT investigation[J]. J Phys Chem C, 2015, 119(51):28377-28388. doi: 10.1021/acs.jpcc.5b07497
    [15] CAO D B, WANG S G, LI Y W, WANG J, JIAO H. What is the product of ketene hydrogenation on Fe5C2(001):Oxygenates or hydrocarbons?[J]. J Mol Catal A:Chem, 2007, 272(1/2):275-287.
    [16] LING L, WANG Q, ZHANG R. Formation of C2 oxygenates and ethanol from syngas on an Fe-decorated Cu-based catalyst:Insight into the role of Fe as a promoter[J]. Phys Chem Chem Phys, 2017, 19(45):30883-30894. doi: 10.1039/C7CP05411D
    [17] TIAN X, WANG T, YANG Y, LI Y W, JIAO H J. Structures and energies of Cu clusters on Fe and Fe3C surfaces from density functional theory computation[J]. Phys Chem Chem Phys, 2014, 16(48):26997-27011. doi: 10.1039/C4CP04012K
    [18] 赵训华, 李永旺, 王建国, 霍春芳. Fe(100)表面Cu单层膜上CO的吸附解离以及C-C偶合反应[J].燃料化学学报, 2011, 39(12):956-960. doi: 10.3969/j.issn.0253-2409.2011.12.013

    ZHAO Xun-hua, LI Yong-wang, WANG Jian-guo, HUO Chun-fang. CO adsorption, CO dissociation, and CC coupling on Cu monolayer-covered Fe (100)[J]. J Fuel Chem Technol, 2011, 39(12):956-960. doi: 10.3969/j.issn.0253-2409.2011.12.013
    [19] KRESSE G, FURTHMVLLER J. Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6:15-50. doi: 10.1016/0927-0256(96)00008-0
    [20] KRESSE G, FURTHMVLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54:11169-11186. doi: 10.1103/PhysRevB.54.11169
    [21] BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50:17953-17979. doi: 10.1103/PhysRevB.50.17953
    [22] KRESSE G, HAFNER J. First-principles study of the adsorption of atomic H on Ni (111), (100) and (110)[J]. Surf Sci, 2000, 459:287-302. doi: 10.1016/S0039-6028(00)00457-X
    [23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77:3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [24] PERDEW J P, BURKEK, ERNZERHOF M. ERRATA:Generalized gradient approximation made simple[J]. Phys Rev Lett, 1997, 78:1396. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b31ae225ab43d9cfa9076b238ba448e1
    [25] METHFESSEL M, PAXTON A T. High-precision sampling for brillouin-zone integration in metals[J]. Phys Rev B, 1989, 40:3616. doi: 10.1103/PhysRevB.40.3616
    [26] BLIGAARD T, NØRSKOV J K, DAHL S, MATTHIESEN J, CHRISTENSEN CH, SEHESTED J. The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. J Catal, 2004, 224:206-217. doi: 10.1016/j.jcat.2004.02.034
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  130
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-19
  • 修回日期:  2020-04-15
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-04-10

目录

    /

    返回文章
    返回