留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同分布形式的钙盐对燃煤三模态颗粒物生成的影响

张平安 袁静 于敦喜 罗光前 姚洪

张平安, 袁静, 于敦喜, 罗光前, 姚洪. 不同分布形式的钙盐对燃煤三模态颗粒物生成的影响[J]. 燃料化学学报(中英文), 2016, 44(3): 273-278.
引用本文: 张平安, 袁静, 于敦喜, 罗光前, 姚洪. 不同分布形式的钙盐对燃煤三模态颗粒物生成的影响[J]. 燃料化学学报(中英文), 2016, 44(3): 273-278.
ZHANG Ping-an, YUAN Jing, YU Dun-xi, LUO Guang-qian, YAO Hong. Influence of different distributions of Ca-mineral in coal on trimodal particulate matter formation during combustion[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 273-278.
Citation: ZHANG Ping-an, YUAN Jing, YU Dun-xi, LUO Guang-qian, YAO Hong. Influence of different distributions of Ca-mineral in coal on trimodal particulate matter formation during combustion[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 273-278.

不同分布形式的钙盐对燃煤三模态颗粒物生成的影响

基金项目: 

湖北省科技支撑计划 2014BCB040

详细信息
    通讯作者:

    姚洪, Tel: +86-27-87545526(O), E-mail: hyao@mail.hust.edu.cn

  • 中图分类号: TK224.1

Influence of different distributions of Ca-mineral in coal on trimodal particulate matter formation during combustion

Funds: 

The project was supported by the Science and technology support program of Hubei Province 2014BCB040

  • 摘要: 通过物理掺混和溶液浸渍两种方式将醋酸钙添加至烟煤中, 分别制得富含外在钙盐的掺钙煤与富含内在钙盐的浸钙煤, 将原煤、掺钙煤和浸钙煤在沉降炉中进行燃烧实验, 炉膛温度1300℃.收集并分析燃烧生成的颗粒物, 研究不同分布形式的钙盐对三模态颗粒物生成的影响.结果表明, 三种煤燃烧生成的超细模态、中间模态和粗模态颗粒物均分别位于小于0.2、0.2-2.0和大于2.0μm粒径范围内; 内、外在钙盐均促进超细模态颗粒物的生成, 其中, 外在钙盐的促进作用更明显; 内在钙盐抑制中间模态颗粒物的生成, 而外在钙盐促进其生成; 对于粗模态颗粒物的生成, 内在钙盐具有促进作用, 外在钙盐作用不明显.
  • 图  1  燃煤颗粒物的生成机理示意图

    Figure  1  Mechanisms of PM formation during coal combustion

    图  2  原煤矿物分布(CCSEM分析获得)

    Figure  2  Mineral distribution in raw coal (detected by CCSEM)

    图  3  沉降炉结构示意图

    Figure  3  Schematic diagram of the drop tube furnace

    图  4  不同煤样燃烧生成颗粒物中Al元素质量粒径分布

    Figure  4  Mass fraction size distributions of Al in PMs generated by different coals combustion

    图  5  不同煤样燃烧时超细模态颗粒物的产率

    Figure  5  Yields of ultrafine mode PM generated by different coals combustion

    图  6  超细模态颗粒物(DLPI第4级) 中Ca含量

    Figure  6  Contents of Ca in ultrafine mode PM (collected on DLPI plate 4) of different coals

    图  7  不同煤样燃烧时中间模态颗粒物的产率

    Figure  7  Yields of central mode PM generated by different coals combustion

    图  8  中间模态颗粒物(DLPI第8级) 中Ca含量

    Figure  8  Contents of Ca in central mode PM (collected on DLPI plate 8) of different coals

    图  9  不同煤样燃烧时粗模态颗粒物的产率

    Figure  9  Yields of coarse mode PM generated by different coals combustion

    图  10  粗模态颗粒物(DLPI第12级) 中Ca含量

    Figure  10  Contents of Ca in coarse mode PM (collected on DLPI plate 12) of different coals

    表  1  原煤特性分析

    Table  1  Properties of raw coal

    Proximate analysis w/%Ultimate analysis w/%
    MAVFCCHNSO*
    0.6836.5721.5441.2150.583.140.823.584.64
    Major ash components w/%
    Na2OMgOAl2O3SiO2P2O5SO3K2OCaOTiO2Fe2O3
    1.001.2932.3157.030.141.711.730.680.873.24
    *: by difference
    下载: 导出CSV
  • [1] YAO Q, LI S Q, XU H W, ZHUO J K, SONG Q. Studies on formation and control of combustion particulate matter in China: A review [J]. Energy, 2009, 34(9): 1296-1309. doi: 10.1016/j.energy.2009.03.013
    [2] LINAK W P, MILLER C A, SEAMES W S, WENDT J O L, ISHINOMORI T, ENDO Y, MIYAMAE S. On trimodal particle size distributions in fly ash from pulverized-coal combustion[J]. Proc Combust Inst, 2002, 29(1): 441-447. doi: 10.1016/S1540-7489(02)80058-X
    [3] SEAMES W S. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion[J]. Fuel Process Technol, 2003, 81(2): 109-125. doi: 10.1016/S0378-3820(03)00006-7
    [4] YU D X, XU M H, YAO H, SUI J C, LIU X W, YU Y, CAO Q. Use of elemental size distributions in identifying particle formation modes[J]. Proc Combust Inst, 2007, 31(6): 1921-1928. https://www.researchgate.net/publication/223232052_Use_of_elemental_size_distributions_in_identifying_particle_formation_modes
    [5] QUANN R J. Ash vaporization under simulated pulverized coal combustion conditions[D]. Cambridge: Massachusetts Institute of Technology, 1982.
    [6] YU D X, XU M H, YAO H, LIU X W, ZHOU K, LI L, WEN C. Mechanisms of the central mode particle formation during pulverized coal combustion [J]. Proc Combust Inst, 2009, 32(1): 2075-2082. https://www.researchgate.net/publication/245224403_Mechanisms_of_the_central_mode_particle_formation_during_pulverized_coal_combustion
    [7] KANG S G. Fundamental studies of mineral matter transformation during pulverized coal combustion: Residual ash formation[D]. Cambridge: Massachusetts Institute of Technology, 1991.
    [8] HELBLE J J. A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators[J]. Fuel Process Technol, 2000, 63(2/3): 125-147. https://www.researchgate.net/publication/223578384_Model_for_the_air_emissions_of_trace_metallic_elements_from_coal_combustors_equipped_with_electrostatic_precipitators
    [9] 徐明厚, 于敦喜, 刘小伟.燃煤可吸入颗粒物的形成与排放[M].北京:科学出版社, 2009.

    XU Ming-hou, YU Dun-xi, LIU Xiao-wei. Formation and Emission of Particulate Matter During Coal Combustion[M]. Beijing: Science Press, 2009.
    [10] MCLENNAN A R, BRYANT G W, BAILEY C W, STANMORE B R, WALL T F. An experimental comparison of the ash formed from coals containing pyrite and siderite mineral in oxidizing and reducing conditions[J]. Energy Fuels, 2000, 14(2): 308-315. doi: 10.1021/ef990092h
    [11] 于敦喜, 徐明厚, 姚洪, 刘小伟, ZHANG Lian, WANG Qun-ying, NINOMIYA Y.利用CCSEM对煤中矿物特性及其燃烧转化行为的研究[J].工程热物理学报, 2007, 28(5): 875-878. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200705050.htm

    YU Dun-xi, XU Ming-hou, YAO Hong, LIU Xiao-wei, ZHANG Lian, WANG Qun-ying, NINOMIYA Y. Study on coal mineral properties and their transformation behavior during combustion by CCSEM[J]. J Eng Thermophys, 2007, 28(5): 875-878. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200705050.htm
    [12] 占中华.矿物特性对燃煤亚微米颗粒物排放特性影响研究[D].武汉:华中科技大学, 2011.

    ZHAN Zhong-hua. Effect of mineral characteristics on particulate matter emission during pulverized coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 2011.
    [13] WANG Q Y, ZHANG L A, SATO A, NINOMIYA Y, YAMASHITA T. Interactions among inherent minerals during coal combustion and their impacts on the emission of PM10. 1. Emission of micrometer-sized particles[J]. Energy Fuels, 2007, 21(2): 756-765. doi: 10.1021/ef0603075
    [14] SENIOR C L, FLAGAN R C. Synthetic chars for the study of ash vaporization[C]//Twentieth symposium (international) on combustion. The Combustion Institute, 1984: 921-929.
    [15] ARENILLAS A, PEVIDA C, RUBIERA F, PIS J J. Comparison between the reactivity of coal and synthetic coal models[J]. Fuel, 2003, 82(3): 2001-2006. https://www.researchgate.net/publication/223372799_Comparison_between_the_reactivity_of_coal_and_synthetic_coal_models
    [16] 莫鑫. O2/CO2燃烧条件下煤中黄铁矿的转化行为研究[D].武汉:华中科技大学, 2013.

    MO Xin. Research on transformation of pyrite in coal under O2/CO2 combustion conditions[D]. Wuhan: Huazhong University of Science and Technology, 2013.
    [17] NINOMIYA Y, WANG Q Y, XU SY, TERAMAE T, AWAYA I. Evaluation of a Mg-based additive for particulate matter (PM2.5) reduction during pulverized coal combustion[J]. Energy Fuels, 2010, 24(1): 199-204. doi: 10.1021/ef900556s
    [18] 张洪, 胡光州, 范佳鑫, 蒲文秀, 莫言学, 哈斯, 李迎.矿物在煤粉中的分布规律研究[J].工程热物理学报, 2008, 29(7): 1231-1235. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200807042.htm

    ZHANG Hong, HU Guang-zhou, FAN Jia-xin, PU Wen-xiu, MO Yan-xue, HA Si, LI Ying. Study on the distribution of mineral in pulverized coals[J]. J Eng Thermophys, 2008, 29(7): 1231-1235. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200807042.htm
    [19] ZHANG P A, YU D X, LUO G Q, YAO H. Temperature effect on central mode particulate matter formation in combustion of coals with different mineral compositions[J]. Energy Fuels, 2015, 29(8): 5245-5252. doi: 10.1021/acs.energyfuels.5b00784
    [20] TERAMAE T, TAKARADA T. Fine ash formation during pulverized coal combustion[J]. Energy Fuels, 2009, 23(3): 2018-2024. https://www.researchgate.net/publication/231273778_Fine_Ash_Formation_during_Pulverized_Coal_Combustion
    [21] YU D X, XU M H, YAO H, LIU X W, ZHOU K. A new method for identifying the modes of particulate matter from pulverized coal combustion[J]. Powder Technol, 2008, 183(1): 105-114. doi: 10.1016/j.powtec.2007.11.011
    [22] 肖海平, 周俊虎, 刘建忠.醋酸钙镁高温脱硫脱硝实验研究[J].中国电机工程学报, 2007, 27(35): 23-27. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200735005.htm

    XIAO Hai-ping, ZHOU Jun-hu, LIU Jian-zhong. Laboratory study on the high-temperature capture of SO2 and NOx by calcium magnesium acetate[J].Proc Chin Soc Electr Eng, 2007, 27(35): 23-27. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200735005.htm
    [23] 刘洪涛, 韩奎华, 路春美, 李辉. O2/CO2气氛下木醋酸调质石灰石再燃/先进再燃脱硝性能研究[J].燃料化学学报, 2013, 41(2): 228-234. doi: 10.1016/S1872-5813(13)60015-8

    LIU Hong-tao, HAN Kui-hua, LU Chun-mei, LI Hui. Experimental study on reburning/advanced reburning performance of limestone modified by wood vinegar for NO reduction under O2/CO2 atmosphere[J].J Fuel Chem Technol, 2013, 41(2): 228-234. doi: 10.1016/S1872-5813(13)60015-8
    [24] GAO X P, RAHIM M U, CHEN X X, WU H W. Significant contribution of organically-bound Mg, Ca and Fe to inorganic PM10 emission during the combustion of pulverized Victorian brown coal[J]. Fuel, 2014, 117(1): 825-832. https://www.researchgate.net/publication/259869701_Significant_contribution_of_organically-bound_Mg_Ca_and_Fe_to_inorganic_PM10_emission_during_the_combustion_of_pulverized_Victorian_brown_coal
    [25] QIU J R, LI F, ZHENG Y, ZHENG C G, ZHOU H C. The influences of mineral behaviour on blended coal ash fusion characteristics[J]. Fuel, 1999, 78(8): 963-969. doi: 10.1016/S0016-2361(99)00005-8
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  24
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-15
  • 修回日期:  2016-01-06
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-03-30

目录

    /

    返回文章
    返回