留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Catalytic combustion of volatile organic compounds over CuO-CeO2 supported on SiO2-Al2O3 modified glass-fiber honeycomb

HE Dan LIU Lai-shuan REN Jun HU Tuo-ping

何丹, 柳来栓, 任君, 胡托平. SiO2-Al2O3玻纤载体负载CuO-CeO2对挥发性有机化合物催化燃烧性能研究[J]. 燃料化学学报(中英文), 2017, 45(3): 354-361.
引用本文: 何丹, 柳来栓, 任君, 胡托平. SiO2-Al2O3玻纤载体负载CuO-CeO2对挥发性有机化合物催化燃烧性能研究[J]. 燃料化学学报(中英文), 2017, 45(3): 354-361.
HE Dan, LIU Lai-shuan, REN Jun, HU Tuo-ping. Catalytic combustion of volatile organic compounds over CuO-CeO2 supported on SiO2-Al2O3 modified glass-fiber honeycomb[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 354-361.
Citation: HE Dan, LIU Lai-shuan, REN Jun, HU Tuo-ping. Catalytic combustion of volatile organic compounds over CuO-CeO2 supported on SiO2-Al2O3 modified glass-fiber honeycomb[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 354-361.

SiO2-Al2O3玻纤载体负载CuO-CeO2对挥发性有机化合物催化燃烧性能研究

基金项目: 

Foundation of Shanxi Province project 2009011011-4

International Scientific and Technological Cooperation Projects of Shanxi Province 2015081043

详细信息
  • 中图分类号: O643.36

Catalytic combustion of volatile organic compounds over CuO-CeO2 supported on SiO2-Al2O3 modified glass-fiber honeycomb

Funds: 

Foundation of Shanxi Province project 2009011011-4

International Scientific and Technological Cooperation Projects of Shanxi Province 2015081043

More Information
  • 摘要: 采用等体积共浸渍法制备了CuO-CeO2整体式催化剂, 评价了催化剂对乙酸乙酯、异丙醇及甲苯的催化燃烧性能.采用N2吸附-脱附、X射线衍射 (XRD)、氢气程序升温还原 (H2-TPR)、氨气程序升温脱附 (NH3-TPD) 以及挥发性有机化合物脱附等手段对催化剂进行了表征.表征数据显示, 氧化铜以高分散态均匀分散存在于载体表面, 氧化铈则是小的纳米颗粒, 氧化铈颗粒粒径随着Cu/Ce物质的量比的减小而增大.添加铈氧化物会显著增加总酸量, 特别是路易斯酸酸位的量, 同时增强了乙酸乙酯和异丙醇的吸附量, 吸附量的增加提高了催化剂对乙酸乙酯和异丙醇的催化燃烧性能.从甲苯的催化燃烧实验可以看出, 大量添加CeO2稍微增加了甲苯的吸附容量, 减弱了催化剂的还原性、降低了活性氧的含量, 最终导致甲苯的低转化率.催化行为由氧化铜、氧化铈以及载体三者之间的共同作用决定, 这三者的协同作用不仅影响着表面氧的活性同时影响着催化剂对甲苯的吸附能力.
  • Figure  1  XRD patterns of various catalysts calcined at 600 ℃

    Figure  2  H2-TPR profiles of various catalysts

    Figure  3  NH3-TPD profiles of various catalysts

    Figure  4  TPD profiles of various catalysts for the adsorption of ethyl acetate (a), isopropanol (b), and toluene (c)

    a: CeO2/Al2O3-M; b: Cu0.2Ce0.8/Al2O3-M; c: Cu0.33Ce0.67/Al2O3-M; e: Cu0.67Ce0.33/Al2O3-M; f: CuO/Al2O3-M

    Figure  5  Conversion of ethyl acetate vs. reaction temperature over various catalysts reaction conditions: 1 804 mg/m3 ethyl acetate, 20% oxygen, 1% H2O, N2 balance; GHSV=20 000 h-1

    Figure  6  Conversion of isopropanol vs. reaction temperature over various catalysts reaction conditions: 1 228 mg/m3 isopropanol, 20% oxygen, 1% H2O, N2 balance; GHSV=20 000 h-1

    Figure  7  Conversion of toluene vs. reaction temperature over various catalysts reaction conditions: 1 884 mg/m3 toluene, 20% oxygen, 1% H2O, N2 balance; GHSV=2 000 h-1

    Figure  8  Influence of time on stream on the oxidation of ethyl acetate reaction conditions: 1 804 mg/m3 ethyl acetate, 20% oxygen, 1% H2O, N2 balance; GHSV=20 000 h-1

    Table  1  Properties of various catalysts

    Catalyst A/ (m2·g-1) vp / (cm3·g-1) dp / nma DC/ nmb H2 consumed/ (mmol·g-1) Acidity/(μmol·g-1)c Adsorption capacity/ (μmol·g-1)
    Lewis Brønsted total ethyl acetate isopropanol toluene
    CuO/Al2O3-M 58 0.130 9.0 - 1.20 1 099 307 1 406 251 1 012 52
    Cu0.67Ce0.33/Al2O3-M 56 0.125 8.9 - 0.61 1 299 384 1 683 281 1 294 56
    Cu0.5Ce0.5/Al2O3-M 53 0.123 9.3 4.5 0.48 1 456 279 1 735 334 1 424 66
    Cu0.33Ce0.67/Al2O3-M 50 0.117 9.4 4.8 0.40 1 352 276 1 628 279 1 153 61
    Cu0.2Ce0.8/Al2O3-M 44 0.112 10.2 4.6 0.13 1 340 281 1 621 307 1 258 59
    CeO2/Al2O3-M 36 0.101 11.2 5.8 0.06 1 291 273 1 561 261 1 280 50
    a: pore diameter determined with the nitrogen desorption isotherms by the BJH method;
    b: particle sizes estimated from the (111) ceria diffraction peaks by using Scherrer equation;
    c: acidity determined by NH3-TPD
    下载: 导出CSV
  • [1] LIOTTA L F. Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Appl Catal B:Environ, 2010, 100(3/4):403-412. http://www.sciencedirect.com/science/article/pii/S0926337310003760
    [2] LI W H, GONG H. Recent progress in the removal of volatile organic compounds by catalytic combustion[J]. Acta Phys Chim Sin, 2010, 26(4):885-894. https://www.researchgate.net/publication/262824167_Recent_Progress_in_the_Removal_of_Volatile_Organic_Compounds_by_Catalytic_Combustion
    [3] SAQER S M, KONDARIDES D I, VERYKIOS X E. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on Al2O3[J]. Appl Catal B:Environ, 2011, 103(3/4):275-286. doi: 10.1016/j.apcatb.2011.01.001
    [4] KIM S C, SHIM W G. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Appl Catal B:Environ, 2010, 98(3/4):180-185. https://www.researchgate.net/publication/232403887_Catalytic_combustion_of_VOCs_over_a_series_of_manganese_oxide_catalysts
    [5] LARSSON P O, ANDERSSON A, WALLENBERG L R, SVENSSONY B. Combustion of CO and toluene; Characterisation of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide[J]. J Catal, 1996, 163(2):279-293. doi: 10.1006/jcat.1996.0329
    [6] BIAŁAS A, KONDRATOWICZ T, DROZDEK M, KU'STROWSKI P. Catalytic combustion of toluene over copper oxide deposited on two types of yttria-stabilized zirconia[J]. Catal Today, 2015, 257(1):144-149. https://www.researchgate.net/publication/272365520_Catalytic_combustion_of_toluene_over_copper_oxide_deposited_on_two_types_of_yttria-stabilized_zirconia
    [7] KIM S C. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide[J]. J Hazard Mater, 2002, 91(1/3):285-299. https://www.researchgate.net/publication/11462840_The_Catalytic_Oxidation_of_Aromatic_Hydrocarbons_Over_Supported_Metal_Oxide
    [8] LIU S, WU X D, WENG D, RAN R. Ceria-based catalysts for soot oxidation:A review[J]. J Rare Earth, 2015, 33(6):567-590. doi: 10.1016/S1002-0721(14)60457-9
    [9] DELIMARIS D, IOANNIDES T. VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method[J]. Appl Catal B:Environ, 2009, 89(1/2):295-302. https://www.researchgate.net/publication/223913749_VOC_oxidation_over_CuO-CeO2_catalysts_prepared_by_a_combustion_method
    [10] TSONCHEVA T, ISSA G, BLASCO T, DIMITROV M, POPOVA M, HERNÁNDEZ S, KOVACHEVA D, ATANASOVA G, LÓPEZ NIETO J M. Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica[J]. Appl Catal A:Gen, 2013, 453:1-12. doi: 10.1016/j.apcata.2012.12.007
    [11] LOPATIN S, MIKENIN P, PISAREV D, BARANOV D, ZAZHIGALOV S, ZAGORUIKO A. Pressure drop and mass transfer in the structured cartridges with fiber-glass catalyst[J]. Chem Eng J, 2015, 282:58-65. doi: 10.1016/j.cej.2015.02.026
    [12] PEI T J, LIU L S, XU L K, LI Y, HE D. A novel glass fiber catalyst for the catalytic combustion of ethyl acetate[J]. Catal Commun, 2016, 74:19-23. doi: 10.1016/j.catcom.2015.10.030
    [13] LIU L S, LIU Z Y, YANG J L, HUANG Z G, LIU Z H. Effect of preparation conditions on the properties of a coal-derived activated carbon honeycomb monolith[J]. Carbon, 2007, 45(14):2836-2842. doi: 10.1016/j.carbon.2007.08.006
    [14] ANDRADE-MARTÍNEZ J, ORTEGA-ZARZOSA G, GÓ MEZ-CORTÉ S A, RODRÍGUEZ-GONZÁLEZ V. N2O catalytic reduction over different porous SiO2 materials functionalized with copper[J]. Powder Technol, 2015, 274:305-312. doi: 10.1016/j.powtec.2015.01.048
    [15] SEDJAME H J, FONTAINE C, LAFAYE G, BARBIER JR J. On the promoting effect of the addition of ceria to platinum based alumina catalysts for VOCs oxidation[J]. Appl Catal B:Environ, 2014, 144(1):233-242. https://www.researchgate.net/publication/256093995_On_the_promoting_effect_of_the_addition_of_ceria_to_platinum_based_catalysts_for_VOCs_oxidation
    [16] WAN H Q, WANG Z, ZHU J, LI X W, LIU B, GAO F, DONG L, CHEN Y. Influence of CO pretreatment on the activities of CuO/γ-Al2O3 catalysts in CO+O2 reaction[J]. Appl Catal B:Environ, 2008, 79(3):254-261. doi: 10.1016/j.apcatb.2007.10.025
    [17] JIANG M H, WANG B W, YAO Y Q, LI Z H, MA X B, QIN S D, SUN Q. A comparative study of CeO2-Al2O3 support prepared with different methods and its application on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation[J]. Appl Surf Sci, 2013, 285:267-277. doi: 10.1016/j.apsusc.2013.08.049
    [18] ZHANG S M, HUANG W P, QIU X H, LI B Q, ZHENG X C, WU S H. Comparative study on catalytic properties for low-temperature CO oxidation of Cu/CeO2 and CuO/CeO2 prepared via solvated metal atom impregnation and conventional impregnation[J]. Catal Lett, 2002, 80(1/2):41-46. doi: 10.1023/A:1015318525080
    [19] BERA P, ARUNA S T, PATIL K C, HEGDE M S. Studies on Cu/CeO2:A new NO reduction catalyst[J]. J Catal, 1999, 186(1):36-44. doi: 10.1006/jcat.1999.2532
    [20] HOČEVAR S, KRAŠOVEC U O, OREL B, ARICÓ A S, KIM H. CWO of phenol on two differently prepared CuO-CeO2 catalysts[J]. Appl Catal B:Environ, 2000, 28(2):113-125. doi: 10.1016/S0926-3373(00)00167-3
    [21] TANG X L, ZHANG B C, LI Y, XU Y D, XIN Q, SHEN W J. Carbon monoxide oxidation over CuO/CeO2 catalysts[J]. Catal Today, 2004, 93/95:191-198. doi: 10.1016/j.cattod.2004.06.040
    [22] BERA P, PRIOLKAR K R, SARODE P R, HEGDE M S, EMURA S, KUMASHIRO R, LALLA N P. Structural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques:Formation of a Ce1-xCuxO2-δ solid solution[J]. Chem Mater, 2002, 14(8):3591-3601. doi: 10.1021/cm0201706
    [23] JIANG X Y, LU G L, ZHOU R X, MAO J X, CHEN Y, ZHENG X M. Studies of pore structure, temperature-programmed reduction performance, and microstructure of CuO/CeO2 catalysts[J]. Appl Surf Sci, 2001, 173(3/4):208-220.
    [24] GIORDANO F, TROVARELLI A, DE LEITENBURG C, GIONA M. A model for the temperature-programmed reduction of low and high surface area ceria[J]. J Catal, 2000, 193(2):273-282. doi: 10.1006/jcat.2000.2900
    [25] LAI S Y, QIU Y F, WANG S J. Effects of the structure of ceria on the activity of gold/ceria catalysts for the oxidation of carbon monoxide and benzene[J]. J Catal, 2006, 237(2):303-313. doi: 10.1016/j.jcat.2005.11.020
    [26] HU C Q. Enhanced catalytic activity and stability of Cu0.13Ce0.87Oy catalyst for acetone combustion:Effect of calcination temperature[J]. Chem Eng J, 2010, 159(1/3):129-137.
    [27] ARENA F, DARIO R, PARMALIANA A. A characterization study of the surface acidity of solid catalysts by temperature programmed methods[J]. Appl Catal A:Gen, 1998, 170:127-137. doi: 10.1016/S0926-860X(98)00041-6
    [28] ROY S, HEGDE M S, MADRAS G. Catalysis for NOx abatement[J]. Appl Energy, 2009, 86(11):2283-2297. doi: 10.1016/j.apenergy.2009.03.022
    [29] LEE K J, KUMAR P A, MAQBOOL M S, RAO K N, SONG K H, HA H P. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR:Physico-chemical properties and catalytic activity[J]. Appl Catal B:Environ, 2013, 142/143(10):705-717.
    [30] CHMIELARZ L, DZIEMBAJ R, GRZYBEK T, KLINIK J, ŁOJEWSKI T, OLSZEWSKA D, WEGRZYN A. Pillared smectite modified with carbon and manganese as catalyst for SCR of NOx with NH3. Part Ⅱ. Temperature-programmed studies[J]. Catal Lett, 2000, 70(1):51-56.
    [31] XU H Y, CHEN Y X, LI W Z. The effect of supports on the activity of methane dissociation over Rh catalysts[J]. Chin J Catal, 2007, 28(4):293-295. doi: 10.1016/S1872-2067(07)60026-6
    [32] KIWI-MINSKER L, BULUSHEV D A, RAINONE F, RENKEN A. Implication of the acid-base properties of V/Ti-oxide catalyst in toluene partial oxidation[J]. J Mol Catal A:Chem, 2002, 184(1/2):223-235. https://www.researchgate.net/publication/222707059_Implication_of_the_Acid-Base_Properties_of_VTi-oxide_Catalyst_in_Toluene_Partial_Oxidation
    [33] DE RIVAS B, SAMPEDRO C, LÓPEZ-FONSECA R, GUTIÉ RREZ-ORTIZ MÁ, GUTIÉ RREZ-ORTIZ J I. Low-temperature combustion of chlorinated hydrocarbons over CeO2/HZSM5 catalysts[J]. Appl Catal A:Gen, 2012, 417/418:93-101. doi: 10.1016/j.apcata.2011.12.028
    [34] LIN L Y, BAI H. Promotional effects of manganese on the structure and activity of Ce-Al-Si based catalysts for low-temperature oxidation of acetone[J]. Chem Eng J, 2016, 291:94-105. doi: 10.1016/j.cej.2016.01.098
    [35] CARABINEIRO S A C, CHEN X, MARTYNYUK O, BOGDANCHIKOVA N, AVALOS-BORJA M, PESTRYAKOV A, TAVARES P B, ÓRFÃ O J J M, PEREIRA M F R, FIGUEIREDO J L. Gold supported on metal oxides for volatile organic compounds total oxidation[J]. Catal Today, 2015, 244:103-114. doi: 10.1016/j.cattod.2014.06.034
    [36] LIANG C J, FANG J W. Predicting the kinetics of catalytic oxidation of multicomponent organic waste gases[J]. Chem Eng Sci, 2016, 144:101-107. doi: 10.1016/j.ces.2016.01.038
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  36
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-14
  • 修回日期:  2017-01-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-03-10

目录

    /

    返回文章
    返回