留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同碱基物质对燃煤烟气脱氯的影响

杨建国 黄洲 耿梓文 赵虹 袁伟中 陈锡炯 滕卫明

杨建国, 黄洲, 耿梓文, 赵虹, 袁伟中, 陈锡炯, 滕卫明. 不同碱基物质对燃煤烟气脱氯的影响[J]. 燃料化学学报(中英文), 2018, 46(8): 934-939.
引用本文: 杨建国, 黄洲, 耿梓文, 赵虹, 袁伟中, 陈锡炯, 滕卫明. 不同碱基物质对燃煤烟气脱氯的影响[J]. 燃料化学学报(中英文), 2018, 46(8): 934-939.
YANG Jian-guo, HUANG Zhou, GENG Zi-wen, ZHAO Hong, YUAN Wei-zhong, CHEN Xi-jiong, TENG Wei-ming. Effects of different alkali-based materials on coal-fired flue gas dechlorination[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 934-939.
Citation: YANG Jian-guo, HUANG Zhou, GENG Zi-wen, ZHAO Hong, YUAN Wei-zhong, CHEN Xi-jiong, TENG Wei-ming. Effects of different alkali-based materials on coal-fired flue gas dechlorination[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 934-939.

不同碱基物质对燃煤烟气脱氯的影响

基金项目: 

浙江省能源集团科技项目 ZNKJ-2016-030

详细信息
  • 中图分类号: X511

Effects of different alkali-based materials on coal-fired flue gas dechlorination

Funds: 

the Science and Technology Project of Zhejiang Provincial Energy Group ZNKJ-2016-030

More Information
  • 摘要: 实验探究NaOH、Na2CO3、NaHCO3这三种常见的碱基物质在模拟燃煤烟气中的实际表现,发现三种碱基物质均具有一定的脱氯性能,NaOH、Na2CO3、NaHCO3的脱氯性能依次下降,以脱氯效率70%为目标,使用三种碱基物质Na/Cl比分别需要达到5.8、7.1、8.7。高浓度SO2的存在对烟气脱氯有竞争作用,随着SO2浓度的提高,脱氯效率线性下降,不同碱基物质下,SO2浓度对脱氯效率的影响规律基本一致,SO2浓度每增加100 mg/m3,脱氯效率下降约1.4%。由于三种碱基物质达到相同脱氯效率时的Na/Cl比不同,综合考虑成本和溶解性,NaOH最具工业应用价值。
  • 图  1  气液两相反应过程示意图

    Figure  1  Reaction process of gas-liquid two phases

    图  2  实验平台系统示意图

    Figure  2  Schematic of the experimental system

    图  3  雾化碱液供给系统示意图

    Figure  3  Structure of nebulizer

    图  4  不同碱基物质对烟气脱氯效率的影响

    Figure  4  Effect of different alkalis on dechlorination

    图  5  SO2浓度对烟气脱氯效率的影响

    Figure  5  Effect of SO2 concentration on dechlorination

    表  1  烟气中酸性气体的性质

    Table  1  Properties of acid gases in flue gas

    SO2 SO3 HCl HF CO2
    Activity medium strong strong weak weak
    Concentration high low low low high
    Dissolubility low high high high high
    下载: 导出CSV

    表  2  燃煤机组空预器后烟气组分

    Table  2  Composition of flue gas

    Composition CO2 φ/% O2 φ/% SO2/(mg·m-3) SO3/(μL·L-1) HCl/(μL·L-1) HF/(μL·L-1)
    Concentration 14.0 3.0 2285.7 9.0 33.5 28.4
    φ: volume fraction
    下载: 导出CSV

    表  3  不同碱基物质的成本

    Table  3  Cost of different alkali-based materials

    Alkali-based
    materials
    Market
    average
    price
    (yuan/ton)
    Na/Cl
    at 70%
    dechlorination
    efficiency
    Price of
    removing
    1 mol
    HCl(yuan)
    NaOH 4500 5.8 1.04
    Na2CO3 2400 7.1 1.69
    NaHCO3 1700 8.7 3.29
    下载: 导出CSV

    表  4  不同碱基物质的溶解性

    Table  4  Dissolubility of different alkali-based materials

    Temperature t/℃ 0 10 20 30 40
    NaOH dissolubility /(g·100 mL-1) 42 51 109 119 129
    saturation concentration/% 29.6 33.8 52.2 54.3 56.3
    Na2CO3 dissolubility /(g·100 mL-1) 7 12.5 21.5 39.7 49
    saturation concentration/% 6.5 11.1 17.7 28.4 32.9
    NaHCO3 dissolubility /(g·100 mL-1) 6.9 8.2 9.6 11.1 12.7
    saturation concentration/% 6.5 7.6 8.8 10.0 11.3
    下载: 导出CSV
  • [1] 李玉, 张乔, 王群.蒸发结晶工艺在火电厂脱硫废水零排放中的应用[J].水处理技术, 2016, 425(11):121-122. http://mall.cnki.net/magazine/Article/XBDJ201408022.htm

    LI Yu, ZHANG Qiao, WANG Qun. Application of evaporative crystallization process in the zero discharge of desulfurization waste water in thermal power plant[J]. Technol Water Treat, 2016, 42(11):121-122. http://mall.cnki.net/magazine/Article/XBDJ201408022.htm
    [2] CINGOLANI D, EUSEBI A L, BATTISTONI P. Osmosis process for leachate treatment in industrial platform:Economic and performances evaluations to zero liquid discharge[J]. J Environ Manage, 2017, 203:782-790. doi: 10.1016/j.jenvman.2016.05.012
    [3] MA S, CHAI J, CHEN G, YU W, ZHU S. Research on desulfurization waste-water evaporation:Present and future perspectives[J]. Renewable Sustainable Energy Rev, 2016, 58:1143-1151. doi: 10.1016/j.rser.2015.12.252
    [4] 吴怡卫.石灰石-石膏湿法烟气脱硫废水处理的研究[J].中国电力, 2006, 39(4):75-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdl200604018

    WU Yi-wei. Study on the wastewater treatment in limestone-gypsum wet FGD process[J]. Electr Pow, 2006, 39(4):75-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdl200604018
    [5] 杨建国, 耿梓文, 袁伟中, 陈锡炯, 滕卫明, 刘畅, 赵虹.燃煤烟气脱氯实现脱硫废水零排放技术及其影响[J].中国电机工程学报, 2018, 38(9):2657-2664. https://www.cnki.com.cn/qikan-MTZH201703011.html

    YANG Jian-guo, GENG Zi-wen, YUAN Wei-zhong, CHEN Xi-jiong, TENG Wei-ming, LIU Chang, ZHAO Hong. The technology of coal-fired flue gas dechlorination for realizing zero-discharge of desulfurization wastewater and its influences on boiler[J]. Proc CSEE, 2018, 38(9):2657-2664. https://www.cnki.com.cn/qikan-MTZH201703011.html
    [6] LIU C, ZHAO H, YANG W Y, QIU K Z, YANG J G, GENG Z W, TENG W M, YUAN W Z, CHEN X J. Chemical kinetics simulation of semi-dry dechlorination in coal-fired flue gas[J]. J Zhejiang Univ-Sci A, 2018, 2(19):148-157.
    [7] 解海卫, 张于峰, 张艳.垃圾焚烧电厂烟气脱酸数值模拟及实验研究[J].中国电机工程学报, 2008, 28(5):17-22. https://cnki.com.cn/qikan-ZGDC200805004.html

    JIE Hai-wei, ZHANG Yu-feng, ZHANG Yan. Numerical simulation and experimental study of flue gas cleaning in waste incineration power plants[J]. Proc CSEE, 2008, 28(5):17-22. https://cnki.com.cn/qikan-ZGDC200805004.html
    [8] 臧仁德, 张力.垃圾与煤混烧烟气脱酸的模拟及实验[J].煤炭学报, 2011, 36(8):1385-1390. http://www.oalib.com/paper/4234290

    ZANG Ren-de, ZHANG Li. Numerical simulation and experimental on deacidification of flue gas by co-combustion of MSW with coal[J]. J China Coal Soc, 2011, 36(8):1385-1390. http://www.oalib.com/paper/4234290
    [9] ZHANG C X, WANG Y X, YANG Z H, XU M H. Chlorine emission and dechlorination in co-firing coal and the residue from hydrochloric acid hydrolysis of discorea zingiberensis[J]. Fuel, 2006, 85(14/15):2034-2040.
    [10] FRIGGE L, STROEHLE J, EPPLE B. Release of sulfur and chlorine gas species during coal combustion and pyrolysis in an entrained flow reactor[J]. Fuel, 2017, 201:105-110. doi: 10.1016/j.fuel.2016.11.037
    [11] LI W, LU H L, CHEN H K, LI B Q. The volatilization behavior of chlorine in coal during its pyrolysis and CO2-gasification in a fluidized bed reactor[J]. Fuel, 2005, 84(14/15):1874-1878.
    [12] TSUBOUCHI N, OHTSUKA S, NAKAZATO Y, OHTSUKA Y. Formation of hydrogen chloride during temperature-programmed pyrolysis of coals with different ranks[J]. Energy Fuels, 2005, 19(2):554-560. doi: 10.1021/ef040077z
    [13] GUO S Q, YANG J L, LIU Z Y. The fate of fluorine and chlorine during thermal treatment of coals[J]. Environ Sci Technol, 2006, 40(24):7886-7889. doi: 10.1021/es0604562
    [14] BIE R S, LI S Y, YANG L D. Reaction mechanism of CaO with HCl in incineration of wastewater in fluidized bed[J]. Chem Eng Sci, 2005, 60(3):609-616. doi: 10.1016/j.ces.2004.08.022
    [15] SUN Z C, YU F C, LI F X, LI S G, FAN L S. Experimental study of HCl capture using CaO sorbents:Activation, deactivation, reactivation, and ionic transfer mechanism[J]. Ind Eng Chem Res, 2011, 50(10):6034-6043. doi: 10.1021/ie102587s
    [16] VERDONE N, DE FILIPPIS P. Thermodynamic behaviour of sodium and calcium based sorbents in the emission control of waste incinerators[J]. Chemosphere, 2004, 54(7):975-985. doi: 10.1016/j.chemosphere.2003.09.041
    [17] FELLOWS K T, PILAT M J. HCl sorption by dry NaHCO3 for incinerator emissions control[J]. J Air Waste Manage, 1990, 40(6):887-893. doi: 10.1080/10473289.1990.10466734
    [18] 李猛. 钠法烟气脱硫脱硝一体化技术[C]//煤电厂"超低排放"新技术交流研讨会论文. 中国浙江嘉兴: 中国动力工程学会, 2014: 38-45.

    LI Meng. A integrated technology of flue gas desulfurization and denitrification by sodium based materials[C]//Processings of new technology exchange seminar of ultra-low emissions in coal-fired plant. Jiaxing, Zhejiang, China: Chinese Society of Power Engineering, 2014: 38-45.
    [19] 王永刚, 李振虎, 张文胜, 曾东, 郭锴.用旋转填充床以双碱法脱除烟气中的SO2[J].石油化工, 2009, 38(8):893-896.

    WANG Yong-gang, LI Zhen-hu, ZHANG Wen-sheng, CENG Dong, GUO Kai. Removal of sulfur dioxide from flue gas in rotating packed bed by dual-alkali method[J]. Petrochem Technol, 2009, 38(8):893-896.
    [20] LEWIS W K, WHITMAN W G. Principles of gas absorption[J]. Ind Eng Chem, 1924, 16:1215-1220. doi: 10.1021/ie50180a002
    [21] LIU Z S, WEY M Y, LIN C L. Reaction characteristics of Ca(OH)2, HCl and SO2 at low temperature in a spray dryer integrated with a fabric filter[J]. J Hazard Mater, 2002, 95(3):291-304. doi: 10.1016/S0304-3894(02)00142-5
    [22] STEIN J, KIND M, SCHLUNDER E U. The influence of HCl on SO2 absorption in the spray dry scrubbing process[J]. Chem Eng J, 2002, 86(1/2):17-23. doi: 10.1631/jzus.A1600653
    [23] HARTMAN M, SVOBODA K, POHORELY M, SYC M, SKOBLIA S, CHEN P C. Reaction of hydrogen chloride gas with sodium carbonate and its deep removal in a fixed-bed reactor[J]. Ind Eng Chem Res, 2014, 53(49):19145-19158. doi: 10.1021/ie503480k
    [24] 刘畅, 赵虹, 滕卫明, 耿梓文, 邱坤赞, 杨建国, 袁伟中, 陈锡炯. n(Na+)/n(Cl-)对烟气脱氯及脱硫废水零排放的影响[J].煤炭转化, 2017, 40(3):70-75.

    LIU Chang, ZHAO Hong, TENG Wei-ming, GENG Zi-wen, QIU Kun-zan, YANG Jian-guo, YUAN Wei-zhong, CHEN Xi-jiong. Effect of n(Na+)/n(C1-) on semi-dry dechlorination in coal-fired flue gas to realize zero emission of FGD waste water[J]. Coal Convers, 2017, 40(3):70-75.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  40
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-25
  • 修回日期:  2018-06-11
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-08-10

目录

    /

    返回文章
    返回